Warning: Trying to access array offset on value of type null in /home/site/wwwroot/lib/plugins/move/action/rename.php on line 42

Warning: Cannot modify header information - headers already sent by (output started at /home/site/wwwroot/lib/plugins/move/action/rename.php:42) in /home/site/wwwroot/inc/Action/Export.php on line 106

Warning: Cannot modify header information - headers already sent by (output started at /home/site/wwwroot/lib/plugins/move/action/rename.php:42) in /home/site/wwwroot/inc/Action/Export.php on line 106

Warning: Cannot modify header information - headers already sent by (output started at /home/site/wwwroot/lib/plugins/move/action/rename.php:42) in /home/site/wwwroot/inc/Action/Export.php on line 106
====== Chapter 8 Symmetry Mode Refinements ====== The WO3 examples in this chapter and the data sets shown are given in various on line tutorials on John's webpages: [[http://community.dur.ac.uk/john.evans/topas_workshop/tutorial_isoriet.htm|LaMnO3 symmetry mode refinement]] - Structural transformations. Directly refine symmetry-mode amplitudes rather than traditional atomic xyz coordinates of a distorted superstructure. Example based on simulated lab x-ray diffraction data from low-temperature orthorhombic LaMnO3. The symmetry modes are obtained using the ISODISTORT software. [[http://community.dur.ac.uk/john.evans/topas_workshop/tutorial_isoriet_wo3_simple.htm|P21/n room tempertaure WO3 example]] - Structural transformations. Directly refine symmetry-mode amplitudes rather than traditional atomic xyz coordinates of a distorted superstructure. Example based on laboratory x-ray diffraction data from room-temperature monoclinic WO3. The symmetry modes are obtained using the ISODISTORT software. [[http://community.dur.ac.uk/john.evans/topas_workshop/tutorial_isoriet_wo3_advanced.htm|Room and high T refinements]] - Structural transformations. A more advanced symmetry-mode refinement example based on room-temperature WO3. Fit both neutron and X-ray data. Try to determine space-group symmetry at high temperature using ISODISTORT. [[http://community.dur.ac.uk/john.evans/topas_workshop/tutorial_exhaustive_symmetry.htm|Exhaustive group-subgroup tree searching]] - By combining topas, ISODISTORT and some python scripts you can automatically search through different space group possibilities for samples which undergo symmetry-lowering phase transitions. [[http://community.dur.ac.uk/john.evans/topas_workshop/tutorial_GA_wo3.htm|Using a GA to determine symmetry]] - This tutorial teaches you how to use a Genetic Algorithm with a P1 distortion mode model of a structure to decide which modes are actually important in fitting the data. This lets you simultaneously determine the space group and structure of a material. The tutorial uses WO3 as an example. See also the magnetic example below. ===== Chapter 8.5 Mg(H2O)6RbBr3 symmetry mode refinement ===== The data and cif files are linked in the single .zip file [[http://community.dur.ac.uk/john.evans/topas_book/mgh2o6rbbr3_symmetry_modes.zip|here]]. The INP file is: r_exp 3.66048948 r_exp_dash 5.71356407 r_wp 5.81321323 r_wp_dash 9.07369531 r_p 4.40883513 r_p_dash 7.43932786 weighted_Durbin_Watson 0.844563949 gof 1.58809724 iters 1000 continue_after_convergence xdd "RbBrMgBr2_6H2O_295K.raw" r_exp 3.66048948 r_exp_dash 5.71356407 r_wp 5.81321323 r_wp_dash 9.07369531 r_p 4.40883513 r_p_dash 7.43932786 weighted_Durbin_Watson 0.844563949 gof 1.58809724 range 1 ' do_errors bkg @ 349.66695` -169.568495` 131.058005` -63.3388818` 31.6250629` -18.4412314` 24.5858761` -38.5678066` 31.3723939` 3.263828` -15.0038769` -3.13862232` 4.42170131` 1.85545313` 2.01442939` -8.33280089` start_X 10 One_on_X(@, 6824.72452`) Zero_Error(@, 0.00286`) LP_Factor( 27.3) Rp 217.5 Rs 217.5 axial_conv filament_length 8 sample_length 8 receiving_slit_length 8 secondary_soller_angle @ 2.73398` axial_n_beta 20 Slit_Width( 0.1) lam ymin_on_ymax 0.0001 la 1 lo 1.540596 lh 0.401844 str CS_L(@, 802.58213`) CS_G(@, 818.88438`) Strain_G(@, 0.12267`) r_bragg 3.59543037 phase_name Structure MVW( 1781.925, 1311.261`, 96.228`) scale @ 8.50799312e-05` Phase_LAC_1_on_cm( 163.20756`) Phase_Density_g_on_cm3( 2.25657`) space_group C12/c1 a @ 9.641327` b @ 9.865327` c @ 13.786095` be @ 90.08790` '{{{mode definitions prm a1 -0.03398` min -2.00 max 2.00 'Pm-3m[0,1/2,0]X4-(0;0;a)[Br:d:dsp] Eu(a) prm a2 0.07955` min -2.00 max 2.00 'Pm-3m[0,1/2,0]X5-(0,0;0,0;a,-a)[Br:d:dsp] A2u(a) prm a3 -0.18402` min -2.00 max 2.00 'Pm-3m[0,1/2,0]X5-(0,0;0,0;a,-a)[Br:d:dsp] Eu(a) prm a4 0.03595` min -1.41 max 1.41 'Pm-3m[0,1/2,0]X5-(0,0;0,0;a,-a)[Rb:a:dsp] T1u(a) prm a5 0.34429` min -3.46 max 3.46 'Pm-3m[0,0,0]GM1+(a)[O:f:dsp] A1(a) prm a6 0.01730` min -2.45 max 2.45 'Pm-3m[0,0,0]GM3+(a,0)[O:f:dsp] A1(a) prm a7 2.36162` min -2.83 max 2.83 'Pm-3m[0,0,0]GM4+(a,-a,0)[O:f:dsp] E(a) prm a8 0.15038` min -2.83 max 2.83 'Pm-3m[0,0,0]GM5+(a,b,b)[O:f:dsp] E(a) prm a9 0.02173` min -2.83 max 2.83 'Pm-3m[0,0,0]GM5+(a,b,b)[O:f:dsp] E(b) prm a10 -1.61762` min -2.83 max 2.83 'Pm-3m[0,1/2,0]X1-(0;0;a)[O:f:dsp] E(a) prm a11 0.07180` min -2.83 max 2.83 'Pm-3m[0,1/2,0]X4-(0;0;a)[O:f:dsp] A1(a) prm a12 0.17458` min -2.83 max 2.83 'Pm-3m[0,1/2,0]X5-(0,0;0,0;a,-a)[O:f:dsp] E_1(a) prm a13 0.33838` min -2.00 max 2.00 'Pm-3m[0,1/2,0]X5-(0,0;0,0;a,-a)[O:f:dsp] E_2(a) '}}} '{{{mode-amplitude to delta transformation prm Br_1_dx = +0.03601*a2 + 0.03601*a3;: -0.00376` prm Br_1_dy = -0.03601*a2 + 0.03601*a3;: -0.00949` prm Br_1_dz = -0.03601*a1;: 0.00122` prm Rb_1_dy = +0.07203*a4;: 0.00259` prm O_1_dx = +0.02079*a5 + 0.01470*a6 + 0.02547*a8 + 0.02547*a10 - 0.02547*a11;: -0.03179` prm O_1_dy = -0.02079*a5 - 0.01470*a6 + 0.02547*a8 + 0.02547*a10 + 0.02547*a11;: -0.04295` prm O_1_dz = +0.01801*a7 + 0.01801*a9 + 0.02547*a12;: 0.04737` prm O_2_dx = +0.02079*a5 + 0.01470*a6 + 0.02547*a8 - 0.02547*a10 + 0.02547*a11;: 0.05427` prm O_2_dy = -0.02079*a5 - 0.01470*a6 + 0.02547*a8 - 0.02547*a10 - 0.02547*a11;: 0.03579` prm O_2_dz = +0.01801*a7 + 0.01801*a9 - 0.02547*a12;: 0.03848` prm O_3_dx = -0.03601*a7 + 0.03601*a9;: -0.08426` prm O_3_dy = -0.05093*a13;: -0.01723` prm O_3_dz = +0.02079*a5 - 0.02940*a6;: 0.00665` '}}} '{{{distorted parameters prm !Mg_1_x = 0;: 0.00000 prm !Mg_1_y = 1/2;: 0.50000 prm !Mg_1_z = 0;: 0.00000 prm Br_1_x = 3/4 + Br_1_dx;: 0.74624` prm Br_1_y = 1/4 + Br_1_dy;: 0.24051` prm Br_1_z = 3/4 + Br_1_dz;: 0.75122` prm !Br_2_x = 0;: 0.00000 prm !Br_2_y = 0;: 0.00000 prm !Br_2_z = 0;: 0.00000 prm !Rb_1_x = 0;: 0.00000 prm Rb_1_y = 0 + Rb_1_dy;: 0.00259` prm !Rb_1_z = 1/4;: 0.25000 prm O_1_x = 0.35500 + O_1_dx;: 0.32321` prm O_1_y = 0.14500 + O_1_dy;: 0.10205` prm O_1_z = 0 + O_1_dz;: 0.04737` prm O_2_x = 0.35500 + O_2_dx;: 0.40927` prm O_2_y = 0.14500 + O_2_dy;: 0.18079` prm O_2_z = 1/2 + O_2_dz;: 0.53848` prm O_3_x = 1/2 + O_3_dx;: 0.41574` prm O_3_y = 0 + O_3_dy;: -0.01723` prm O_3_z = 0.85500 + O_3_dz;: 0.86165` '}}} '{{{mode-dependent sites site Mg_1 x = Mg_1_x; y = Mg_1_y; z = Mg_1_z; occ Mg 1 beq bm 2.19023` site Rb_1 x = Rb_1_x; y = Rb_1_y; z = Rb_1_z; occ Rb 1 beq =bm; site Br_1 x = Br_1_x; y = Br_1_y; z = Br_1_z; occ Br 1 beq bbr 1.67475` site Br_2 x = Br_2_x; y = Br_2_y; z = Br_2_z; occ Br 1 beq =bbr; site O_1 x = O_1_x; y = O_1_y; z = O_1_z; occ O 1 beq bo 0.07538` site O_2 x = O_2_x; y = O_2_y; z = O_2_z; occ O 1 beq =bo; site O_3 x = O_3_x; y = O_3_y; z = O_3_z; occ O 1 beq =bo; '}}} view_structure Out_CIF_STR(RbBrMgBr2_6H2O_295K_DM.cif) Create_2Th_Ip_file(RbBrMgBr2_6H2O_295K_DM.pks) xdd_out RbBrMgBr2_6H2O_295K_DM.prf load out_record out_fmt out_eqn { " %11.5f " = X; " %11.5f " = Yobs; " %11.5f " = Ycalc; " %11.5f\n" = Yobs-Ycalc; } str Strain_G(, 0.17437_0.00430) r_bragg 1.72210317 phase_name Structure MVW( 661.487, 327.428, 3.772`) scale @ 3.59815094e-05` space_group Fm-3m Phase_LAC_1_on_cm( 323.72600) Phase_Density_g_on_cm3( 3.35472) Cubic( 6.89242_0.00010) site Rb1 num_posns 4 x 0 y 0 z 0 occ Rb+1 1 beq !B6 2_LIMIT_MIN_-10 site Br1 num_posns 4 x 0.5 y 0.5 z 0.5 occ Br-1 1 beq =B6; : 2.00000 Create_2Th_Ip_file(RbBr_295K_DM.pks)