Warning: Trying to access array offset on value of type null in /home/site/wwwroot/lib/plugins/move/action/rename.php on line 42

Warning: Cannot modify header information - headers already sent by (output started at /home/site/wwwroot/lib/plugins/move/action/rename.php:42) in /home/site/wwwroot/inc/Action/Export.php on line 106

Warning: Cannot modify header information - headers already sent by (output started at /home/site/wwwroot/lib/plugins/move/action/rename.php:42) in /home/site/wwwroot/inc/Action/Export.php on line 106

Warning: Cannot modify header information - headers already sent by (output started at /home/site/wwwroot/lib/plugins/move/action/rename.php:42) in /home/site/wwwroot/inc/Action/Export.php on line 106
====== K-Factor Quantification ====== Description: Input file example for simultaneous refinement of the external standard and sample data file. Comment: Errors are propagated correctly, MAC's are calculated energy independent and even XRF esd's are propagated to the final result (requires Topas 6). See also [[Mass attenuation coefficient]]. Contributed by: Martin Fisch do_errors '--------------------------------------------------------' ' K Factor calculation from external standard starts here ' OConnor & Raven, Powder Diffraction 3(1) (1988) 2-6 '--------------------------------------------------------' xdd "External_Standard_Corundum.xy" 'XRD Pattern of external standard' rebin_with_dx_of 0.02 r_wp 0 r_exp 0 r_p 0 gof 0 bkg @ 0 0 0 0 0 0 Specimen_Displacement(SD_Corundum, 0) start_X 20 str 'Többens, D.M. et al., Mat. Sci. Forum 378 (2001) 288-293' phase_name "Corundum" a a_Corundum 4.76 min 4.74 max 4.78 b = Get(a); c c_Corundum 12.99 min 12.9 max 13.1 ga 120 space_group 167 site Al1 x =0; y =0; z 0.3522 occ AL+3 1 beq 0.30 site O1 x 0.6937 y =0; z =1/4; occ O-2 1 beq 0.33 scale Scale_Corundum 0.00001 CS_L(CSL_Corundum, 400 min 50 max 5000) Strain_L(StrainL_Corundum, 0.01 min 0.001 max 1) cell_volume Volume_Corundum 0 cell_mass Mass_Corundum 0 phase_MAC MAC_Corundum 0 weight_percent WP_Corundum 0 prm !Crystallinity_Corundum 98 prm Corundum_Lac = Get(mixture_MAC) Get(mixture_density_g_on_cm3);: 0 'Calculation of K-Factor from external standard' prm !KFactor = Scale_Corundum * ( 1.660538921 * (Mass_Corundum/Volume_Corundum) ) * Volume_Corundum^2 * MAC_Corundum / (Crystallinity_Corundum) ;: 0 'Macro for wt.-% from scale, MAC, cell volume and KFactor' macro wt_percent_K_MAC(result) { prm = ( ( Get(scale) * ( 1.660538921 * (Get(cell_mass)/Get(cell_volume)) ) * (Get(cell_volume))^2) * MAC_Sample ) / KFactor ;: result } 'Dummy phases are used for energy dependent oxide MAC calculation' macro d_str { dummy_str space_group P1 scale 0 a 1 b 1 c 1 site } d_str Si occ Si+4 = 1; site O occ O-2 = 2; prm MAC_SiO2 = Get(phase_MAC); : 35.81264 d_str Al occ Al+3 = 2; site O occ O-2 = 3; prm MAC_Al2O3 = Get(phase_MAC); : 31.59020 d_str Fe occ Fe+3 = 2; site O occ O-2 = 3; prm MAC_Fe2O3 = Get(phase_MAC); : 214.26272 d_str Ca occ Ca+2 = 1; site O occ O-2 = 1; prm MAC_CaO = Get(phase_MAC); : 124.46608 d_str Mg occ Mg+2 = 1; site O occ O-2 = 1; prm MAC_MgO = Get(phase_MAC); : 28.61699 d_str S occ S = 1; site O occ O-2 = 3; prm MAC_SO3 = Get(phase_MAC); : 44.15801 d_str K occ K+1 = 2; site O occ O-2 = 1; prm MAC_K2O = Get(phase_MAC); : 122.06126 d_str Na occ Na+1 = 2; site O occ O-2 = 1; prm MAC_Na2O = Get(phase_MAC); : 24.93736 d_str Ti occ Ti+4 = 1; site O occ O-2 = 2; prm MAC_TiO2 = Get(phase_MAC); : 124.23941 d_str Sr occ Sr+2 = 1; site O occ O-2 = 1; prm MAC_SrO = Get(phase_MAC); : 97.04589 d_str P occ P = 2; site O occ O-2 = 5; prm MAC_P2O5 = Get(phase_MAC); : 39.33911 d_str Mn occ Mn+3 = 2; site O occ O-2 = 3; prm MAC_Mn2O3 = Get(phase_MAC); : 191.01235 d_str Cr occ Cr+3 = 2; site O occ O-2 = 3; prm MAC_Cr2O3 = Get(phase_MAC); : 172.14416 d_str C occ C = 1; site B occ O-2 = 2; prm MAC_LOI_CO2 = Get(phase_MAC); : 9.57292 d_str H occ H = 2; site O occ O-2 = 1; prm MAC_LOI_H2O = Get(phase_MAC); : 10.23680 d_str La occ La+3 = 1; site B occ B = 6; prm MAC_LaB6 = Get(phase_MAC); : 237.33852 d_str Zr occ Zr+4 = 1; site Si occ Si+4 = 1; site O occ O-2 = 4; prm MAC_ZrSiO4 = Get(phase_MAC); : 83.19554 '-----------------------------------------------------------------------------' ' Part for phase quantification in sample using external standard starts here' '-----------------------------------------------------------------------------' xdd "Sample_Pattern.xy" 'XRD Pattern of sample' rebin_with_dx_of 0.02 r_wp 0 r_exp 0 r_p 0 gof 0 bkg @ 0 0 0 0 0 0 Specimen_Displacement(@, 0) 'XRF wt.-% data of sample (change prm_with_error to prm for version 5)' prm_with_error !SiO2 0_0 prm_with_error !Al2O3 0_0 prm_with_error !Fe2O3 0_0 prm_with_error !CaO 0_0 prm_with_error !MgO 0_0 prm_with_error !SO3 0_0 prm_with_error !K2O 0_0 prm_with_error !Na2O 0_0 prm_with_error !TiO2 0_0 prm_with_error !SrO 0_0 prm_with_error !P2O5 0_0 prm_with_error !Mn2O3 0_0 prm_with_error !Cr2O3 0_0 prm_with_error !ZrSiO4 0_0 prm_with_error !LaB6 0_0 prm_with_error !LOI_CO2 0_0 'Loss on ignition' prm_with_error !LOI_H2O 0_0 'Loss on ignition' 'MAC calculation from XRF data' prm !MAC_Sample = SiO2*0.01*MAC_SiO2 + Al2O3*0.01*MAC_Al2O3 + Fe2O3*0.01*MAC_Fe2O3 + CaO*0.01*MAC_CaO + MgO*0.01*MAC_MgO + SO3*0.01*MAC_SO3 + K2O*0.01*MAC_K2O + Na2O*0.01*MAC_Na2O + TiO2*0.01*MAC_TiO2 + SrO*0.01*MAC_SrO + P2O5*0.01*MAC_P2O5 + Mn2O3*0.01*MAC_Mn2O3 + Cr2O3*0.01*MAC_Cr2O3 + ZrSiO4*0.01*MAC_ZrSiO4 + LaB6*0.01*MAC_LaB6 + LOI_CO2*0.01*MAC_LOI_CO2 + LOI_H2O*0.01*MAC_LOI_H2O;: 0 str phase_name "Phase in sample" a b c al be ga volume space_group site ... ... ... weight_percent CS_L Strain_L scale wt_percent_K_MAC( 0) 'This macro reports phase amounts using the K-factor method' for xdds { 'Instrument description for both XDDs' lam ymin_on_ymax 0.0001 Lam_recs { 0.0159 1.534753 3.6854 0.5691 1.540596 0.4370 0.0762 1.541058 0.6000 0.2517 1.544410 0.5200 0.0871 1.544721 0.6200 } LP_Factor(0) Rp 240 Rs 240 Slit_Width(0.07) Divergence (0.25) axial_conv filament_length 12 sample_length 10 receiving_slit_length 15 primary_soller_angle 2.55 secondary_soller_angle 2.55 }