LP Corrections

Alan uses:
$L P_{-}$Factor $=\frac{1+\cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{\cos \theta \sin ^{2} \theta}(1)$
This comes from the Lorentz factor:
$L=\frac{1}{\sin \theta \sin 2 \theta}=\frac{1}{\cos \theta \sin ^{2} \theta}$
and Polarisation with a monochromator:
$P=\frac{1-K+K \cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{2}$
where K is fractional polarisation of beam (the traditional expressions given in texts, e.g. Pecharsky). For neutrons K = 0 and the LP expression becomes:

$$
\begin{equation*}
L P=\frac{1}{\cos \theta \sin ^{2} \theta} \tag{4}
\end{equation*}
$$

In Alan's expression (1) $2 \theta_{M}=90$ reduces to (4). This is the same as Lorentz_Factor.
With no monochromator and unpolarised source $\mathrm{K}=0.5$ and the LP expression becomes:

$$
\begin{equation*}
L P=\frac{0.5+0.5 \cos ^{2} 2 \theta}{2 \cos \theta \sin ^{2} \theta} \tag{5}
\end{equation*}
$$

Give or take a scale factor using $2 \theta_{M}=0$ in (1) reduces to (5).
Andy Fitch assumes radiation hitting sample is 100% plane polarised and that the analyser crystals have no effect on the vertical electric vector which I believe means $\mathrm{K}=0$ and one can therefore "pretend" you've got the neutron situation and use $2 \theta_{M}=90$ or expression (4). This is an approximation of a "real" situation where K is typically a small number.

The Madsen macro in topas.inc is:

$$
L P=\frac{1}{2 \cos \theta \sin ^{2} \theta} \frac{1-p p+p p \cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{1+p p \cos ^{2} 2 \theta_{M}}
$$

$\mathrm{pp}=0.5$ for lab tubes with circularly polarised X-rays. The term on the bottom right is a constant and the equation reduces to:

$$
\begin{equation*}
L P=c\left(\frac{0.5+0.5 \cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{2 \cos \theta \sin ^{2} \theta}\right) \tag{7}
\end{equation*}
$$

which is the same as (1), give or take a scale factor.
Use pp = 0 for fully polarised synchrotron (ID31 is 100\% plane polarised) which reduces to:

$$
L P=\frac{1}{2 \cos \theta \sin ^{2} \theta}
$$

which is again the same as $2 \theta_{\mathrm{M}}=90$ in (1).
For a real synchrotron $\mathrm{pp}=0.05$ and the expression becomes:
$L P=c\left(\frac{0.95+0.05 \cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{2 \cos \theta \sin ^{2} \theta}\right)$
This is not going to be a million miles away from expression (4) in real situations.

GSAS

In gsas-speak there are three equations available:
IPOL $=0: \frac{P h+(1-P h) \cos ^{2} 2 \theta}{2 \sin ^{2} \theta \cos \theta}$
$\mathrm{IPOL}=1: \frac{1+P h \cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}$
IPOL $=2: \frac{1+P h \cos ^{2} 2 \theta}{\left(1+\cos ^{2} 2 \theta\right) \sin ^{2} \theta \cos \theta}$
For lab diffractometers with 26.6 mono angle people typically use $\mathrm{IPOL}=0$ and $\mathrm{Ph}=0.555$ or IPOL $=$ 1 and $\mathrm{Ph}=0.8$. Putting $2 \theta_{\mathrm{M}}=26.6$ into Alan's expression gives:
$L P$ _Factor $=\frac{1+\cos ^{2} 2 \theta \times 0.8}{\cos \theta \sin ^{2} \theta}=\frac{0.5+\cos ^{2} 2 \theta \times 0.4}{2 \cos \theta \sin ^{2} \theta}=c\left(\frac{0.555+0.444 \times \cos ^{2} 2 \theta}{2 \cos \theta \sin ^{2} \theta}\right)$
i.e. you have the gsas IPOL = 0 equation with Ph of 0.555 . Or if we take the last equation and divide through by 0.555 we get:
$c\left(\frac{0.555+0.444 \times \cos ^{2} 2 \theta}{2 \cos \theta \sin ^{2} \theta}\right)=\frac{c}{0.555}\left(\frac{1+0.8 \times \cos ^{2} 2 \theta}{\cos \theta \sin ^{2} \theta}\right)$
which is the gsas IPOL = 1 equation.

Fullprof

Fullprof uses:
$P=\frac{1-K+K \cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{2 \sin ^{2} \theta \cos \theta}$
For neutrons manual says " K is ignored" but $\mathrm{K}=0$ is effectively used.
For characteristic X -rays (unpolarized beam) formula is:
$P=\frac{1+\cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}}{2 \sin ^{2} \theta \cos \theta}$
i.e. $K=0.5$ in the general formula multiplied by 2 .

For synchrotrons K must be given and is ~ 0.1.

Summary

Synchrotron use: LP_Factor(90)
Neutron use: LP_Factor(90)
No monochromator use: LP_Factor(0)

