

Alan A Coelho www.topas-academic.net

Bruker–AXS www.bruker-axs.de

May 12, 2020

Ab initio solution of proteins at atomic resolution, Fast simultaneous refinement

of 1000s of data sets, Amazon EC2 cloud computing, PDF Generation, Deconvo-

lution, Capillary aberration, LP-Search, Sine Transform, DPI awarenessPeak fit-

ting, Pawley & Le Bail refinement, Rietveld refinement, PDF Generation, PDF re-

finement, Magnetic structures, CW Neutron refinement, TOF refinement, Stack-

ing-faults, Laue refinement, Indexing, Charge flipping, Structure solution, Decon-

volution and K1 stripping, Penalties, Restraints

http://www.topas-academic.net/
http://www.bruker-axs.de/

Introduction 1

1 Introduction

Contents

1. INTRODUCTION .. 7

1.1 CONVENTIONS .. 7
1.2 INPUT FILE EXAMPLE (INP FORMAT) ... 7
1.3 TEST EXAMPLES ... 8
1.4 TC-INPS.BAT AND THE AAC$ MACRO .. 8
1.5 TOPAS IS 64 BIT .. 9
1.6 LIMITING MEMORY USAGE – MAXMEM.TXT .. 9

2. PARAMETERS ... 10

2.1 WHEN IS A PARAMETER REFINED ... 10
2.2 USER DEFINED PARAMETERS - THE PRM KEYWORD ... 10
2.3 PARAMETER CONSTRAINTS ...11
2.4 THE LOCAL KEYWORD ... 12
2.5 REPORTING ON EQUATION VALUES ... 12
2.6 NAMING OF EQUATIONS ... 13
2.7 EXISTING_PRM ... 13
2.8 STRING_TO_VARIABLE AND DOUBLE_TO_STRING FUNCTIONS .. 14
2.9 DUMMY AND DUMMY_PRM KEYWORDS ... 14
2.10 PARAMETER ERRORS AND CORRELATION MATRIX ... 14
2.11 DEFAULT PARAMETER LIMITS AND LIMIT_MIN / LIMIT_MAX ... 15
2.12 RESERVED PARAMETER NAMES .. 16
2.13 VAL AND CHANGE RESERVED PARAMETER NAMES .. 18
2.14 USING LOCAL TO ASSIST IN USING “FOR ... {}” LOOPS ... 18
2.15 OUT_DEPENDENCES AND OUT_DEPENDENCES_FOR ... 19
2.16 THE NUM_RUNS KEYWORD AND PREPROCESSOR SPECIFICS .. 20

2.16.1 Reserved macro names ... 21
2.16.2 The #list directive – creating arrays of macros ... 21
2.16.3 The File_Variable and File_Variables macro ... 22

3. EQUATION OPERATORS AND FUNCTIONS ... 25

3.1 'IF' AND NESTED 'IF' STATEMENTS ... 28
3.2 FLOATING POINT EXCEPTIONS ... 28

4. THE MINIMIZATION ROUTINES ... 30

4.1 THE CONJUGATE GRADIENT SOLUTION METHOD ... 32
4.2 THE MARQUARDT METHOD .. 33
4.3 APPROXIMATING THE A MATRIX - THE BFGS METHOD .. 33
4.4 LINE MINIMIZATION AND PARAMETER EXTRAPOLATION ... 33
4.5 RESTRAINTS AND PENALTIES .. 34
4.6 MINIMIZING ON PENALTIES ONLY .. 35
4.7 SAVED REFINED VALUES AND SAVE_BEST_CHI2 ... 35
4.8 ERROR CALCULATION... 36
4.9 ERROR DETERMINATION USING SVD AND BOOTSTRAP ERRORS .. 36
4.10 ERROR PROPAGATION USING PRM_WITH_ERROR ... 37
4.11 XDD_SUM AND XDD_ARRAY ... 37
4.12 REFINING ON AN ARBITRARY CHI2 .. 38
4.13 INFORMING ON UNREFINED PARAMETERS ... 39
4.14 SUMMARY, ITERATION AND REFINEMENT CYCLE ... 39
4.15 QUICK_REFINE AND COMPUTATIONAL ISSUES.. 40

Introduction 2

2 Introduction

4.16 SIMULATED ANNEALING AND AUTO_T .. 41
4.17 ADAPTIVE STEP SIZE USING RANDOMIZE_ON_ERRORS .. 42
4.18 CRITERIA OF FIT .. 42

5. PEAK GENERATION AND "PEAK_TYPE" .. 44

5.1 SOURCE EMISSION PROFILES ... 44
5.2 PEAK GENERATION AND PEAK TYPES .. 45
5.3 CONVOLUTION AND THE PEAK GENERATION STACK .. 47
5.4 SPEED / ACCURACY AND PEAK_BUFFER_STEP ... 48
5.5 THE PEAKS BUFFER, SPEED AND MEMORY CONSIDERATIONS ... 49
5.6 AN ACCURATE VOIGT ... 50

6. FAST SIMULTANEOUS REFINEMENT OF 1000S OF PATTERNS ... 52

6.1 EXAMPLE REFINEMENT OF 1000S OF PATTERNS ... 53

7. AMAZON EC2 CLOUD COMPUTING ... 56

7.1 OPERATION .. 56
7.2 PRE-REQUISITES ... 57
7.3 PRICING OF AWS CLOUD RESOURCES ... 57
7.4 AWS DASHBOARD AND OPERATING TC-CLOUD .. 58
7.5 INSTALLING AWS CLI ON THE LOCAL COMPUTER .. 58
7.6 OPERATING TC-CLOUD FROM TOPAS (GUI) .. 59
7.7 TERMINATING/STOPPING TC-VMS AND TC-MON.A... 61
7.8 POWERING OFF TC-VMS AFTER 100 MINUTES OF INACTIVITY .. 62
7.9 RETRIEVING THE INP OR FC FILE THAT GAVE THE BEST GOF .. 62
7.10 MONITORING, TC-CLOUD IS INDEPENDENT OF THE LOCAL COMPUTER 63
7.11 RANDOM NUMBER GENERATOR AUTOMATICALLY SEEDED .. 63
7.12 CLOUD__ #DEFINE AND GET(CLOUD_RUN_NUMBER) .. 63
7.13 ‘SETUP CLOUD’ DETAILS ... 64
7.14 ‘VIRTUAL MACHINES’ TAB OPTIONS ... 65
7.15 CREATING TC-VMS – SPOT INSTANCES .. 66
7.16 CHOOSING THE OPTIMUM VM TYPE ... 67
7.17 UNABLE TO CONNECT TO TC-VMS AFTER LOCAL COMPUTER RESTART 68

8. PROTEIN REFINEMENT .. 69

8.1 READING PROTEIN DATA BANK (PDB) CIF FILES .. 69
8.2 PROTEIN REFINEMENT, 6Y84, SARS-COV-2 MAIN PROTEASE .. 70

9. SOLVING PROTEINS AT ATOMIC RESOLUTION ... 72

9.1 AB INITIO SOLUTION OF TRICLINIC 4LZT ... 75
9.2 SOLUTION OF NON-TRICLINIC LATTICES USING A KNOWN ATOMIC POSITION 76
9.3 AB INITIO SOLUTION OF 5DA6 IN SPACE GROUP R32 .. 78

10. DECONVOLUTION ... 80

10.1 DECONVOLUTION – SIMULATED PATTERN .. 82

11. PDF-GENERATION, GENERATING THE PAIR DISTRIBUTION FUNCTION 85

11.1 PDF-GENERATING - LIFEPO4 .. 85
11.1.1 Operation 0 – Fitting peaks to the diffraction pattern .. 88
11.1.2 Operation 1 – Generation G(r) from the fitted peaks .. 89
11.1.3 Correcting the PDF due to a zero error in reciprocal space ... 91
11.1.4 Generating F(Q) from G(r) - gr_to_fq .. 92
11.1.5 PDF-Generating - Fullerene ... 93

12. PDF REFINEMENT ... 96

Introduction 3

3 Introduction

12.1 PDF_ONLY_EQ_0 .. 97
12.2 INTER AND INTRA MOLECULE FWHMS .. 99
12.3 INSTRUMENT SINC FUNCTION SINC-1.INP .. 101
12.4 WEIGHTING OF PDF AND 2-THETA TYPE DATA .. 101
12.5 TEST_EXAMPLES\PDF\BEQ-2.INP .. 101
12.6 TEST_EXAMPLES\PDF\BEQ-3.INP .. 101
12.7 SPEEDING UP REFINEMENT WITH REBIN_WITH_DX_OF .. 102
12.8 REFINING ON BEQ PARAMETERS .. 102
12.9 STRUCTURE SOLUTION, SIMULATED ANNEALING ... 103
12.10 RIGID BODIES WITH PDF DATA .. 103
12.11 OCCUPANCY MERGING WITH PDF DATA .. 103
12.12 EQUIVALENCE OF PDF_GAUSS_FWHM AND BEQ FOR ONE ATOM TYPE 103

13. STACKING FAULTS ... 105

13.1 FITTING TO A DEBYE-FORMULAE PATTERN USING ‘STACK’ .. 106
13.2 FITTING TO KAOLINITE DATA .. 107
13.3 STACKING FAULTS AND GENERATING SEQUENCES OF LAYERS .. 108

13.3.1 Generating the same stacking sequences each run .. 109
13.3.2 The SF_Smooth macro ... 109
13.3.3 Fitting to DIFFaX test diamond data ... 109
13.3.4 Stacking faults from layers of different layer heights ... 110
13.3.5 Rietveld-Generated example ... 110
13.3.6 Refining on layer heights ... 111

14. QUANTITATIVE ANALYSIS .. 112

14.1 ELEMENTAL WEIGHT PERCENT CONSTRAINT .. 112
14.2 ELEMENTAL COMPOSITION AND RESTRAINTS ... 113
14.3 AMORPHOUS PHASE COMPOSITION ... 114
14.4 USING A DUMMY_STR PHASE TO DESCRIBE AMORPHOUS CONTENT ... 114
14.5 QUANT USING HKL_IS OR OTHER NON-STR PHASES .. 116
14.6 SUMMARY OF QUANT EXAMPLES .. 117
14.7 EXTERNAL STANDARD METHOD.. 117
14.8 QUANT KEYWORDS .. 118

15. MAGNETIC STRUCTURE REFINEMENT... 120

15.1 MAGNETIC REFINEMENT WARNINGS/EXCEPTIONS ... 121
15.2 DISPLAYING MAGNETIC MOMENTS .. 121
15.3 ‘DECOMPOSING’ FMAG FOR SPEED ... 122

16. RIGID BODIES .. 124

16.1 FRACTIONAL, CARTESIAN AND Z-MATRIX COORDINATES ... 125
16.2 TRANSLATING PART OF A RIGID BODY ... 126
16.3 ROTATING PART OF A RIGID BODY AROUND A POINT ... 127
16.4 ROTATING PART OF A RIGID BODY AROUND A LINE ... 128

16.4.1 Using Z-matrix together with rotate and translate ... 130

16.5 THE SIMPLEST OF RIGID BODIES .. 131
16.6 GENERATION OF RIGID BODIES .. 132
16.7 RIGID BODY PARAMETER ERRORS PROPAGATED TO FRACTIONAL COORDINATES 132
16.8 Z-MATRIX COLLINEAR ERROR INFORMATION .. 133
16.9 FUNCTIONS ALLOWING ACCESS TO RIGID-BODY FRACTIONAL COORDINATES 134
16.10 DETERMINING THE ORIENTATION OF A KNOWN FRAGMENT USING A RIGID-BODY 134
16.11 RIGID BODY MACROS ... 134

17. MISCELLANOUS ... 137

17.1 THREADING ... 137

Introduction 4

4 Introduction

17.1.1 Setting the maximum number of threads ... 137

17.2 RESTRAINING BACKGROUND USING THE BKG_AT FUNCTION ... 137
17.3 CALCULATION OF STRUCTURE FACTORS ... 137

17.3.1 Friedel pairs ... 139
17.3.2 Powder data .. 139
17.3.3 Single crystal data ... 140
17.3.4 The Flack parameter .. 140
17.3.5 Single Crystal Output ... 141

17.4 CONVOLUTION ... 141
17.4.1 Instrument and sample convolutions .. 141
17.4.2 Convolutions in general ... 142
17.4.3 Capillary convolution for a focusing convergent beam ... 143
17.4.4 ft_conv ... 144
17.4.5 WPPM .. 147
17.4.6 Microstructure convolutions ... 148

17.5 LOADING OF INP FILES ... 151
17.5.1 if {} else if {} else {} ... 151

17.6 FUNCTIONS – FN, DEF, RETURN, NOINLINE .. 152
17.6.1 Subject independent single crystal refinement ... 154
17.6.2 Computer algebra and out_refinement_stats ... 155

17.7 CIF .. 155
17.8 LARGE REFINEMENTS WITH TENS OF 1000S OF PARAMETERS ... 156
17.9 LAUE REFINEMENT ... 156
17.10 LEARNT SHAPES FOR BACKGROUND OR OTHERWISE .. 156
17.11 EMISSION PROFILE WITH ABSORPTION EDGES ... 159
17.12 SCALE_PHASE_X KEYWORD ... 159
17.13 REFINING ON F0, F’ AND F” ... 160

17.13.1 Using a user defined table to input f0 values via user_y ... 161

17.14 INVALID F1 AND F11 .. 161
17.15 ISOTOPES AND ATOM NAMES ... 161
17.16 ATOMIC DATA FILES AND ASSOCIATED SOURCES .. 162
17.17 REMOVING PHASES DURING A REFINEMENT ... 163
17.18 NUMERICAL LORENTZIAN AND GAUSSIAN CONVOLUTIONS ... 163
17.19 SPACE GROUPS, HKLS AND SYMMETRY OPERATORS .. 163

17.19.1 User defined rotational matrices ... 164

17.20 SITE IDENTIFYING STRINGS .. 164
17.21 OCCUPANCIES AND SYMMETRY OPERATORS .. 164
17.22 PAWLEY AND LE BAIL EXTRACTION ... 165
17.23 ANISOTROPIC REFINEMENT MODELS .. 165

17.23.1 Spherical harmonics .. 165
17.23.2 Miscellaneous models using User defined equations .. 166

17.24 SIMULATED ANNEALING AND STRUCTURE DETERMINATION .. 166
17.24.1 Penalties used in structure determination .. 167
17.24.2 Bond length restraints ... 168

17.25 FILE TYPES AND FORMATS ... 169
17.26 BATCH MODE OPERATION – TC.EXE ... 171

18. KEYWORDS ... 172

18.1 DATA STRUCTURES .. 172
18.2 ALPHABETICAL LISTING OF KEYWORDS .. 176
18.3 KEYWORDS TO SIMPLIFY USER INPUT .. 203

18.3.1 The "load { }" keyword and attribute equations .. 203
18.3.2 The "move_to $keyword" keyword ... 204
18.3.3 The "for xdds { }" and "for strs { }" constructs ... 204

Introduction 5

5 Introduction

19. MACROS AND INCLUDE FILES ... 206

19.1 THE MACRO DIRECTIVE ... 206
19.1.1 Directives with global scope .. 207
19.1.2 Pre-processor equations and #prm, #if, #elseif, #out .. 208
19.1.3 Directives invoked on macro expansion .. 209
19.1.4 Defining unique parameters within macros .. 209
19.1.5 Superfluous parentheses and the '&' Type for macros .. 210

19.2 OVERVIEW ... 211
19.2.1 xdd macros .. 212
19.2.2 Lattice parameters .. 212
19.2.3 Emission profile macros ... 212
19.2.4 Instrument and instrument convolutions .. 212
19.2.5 Phase peak_type's ... 214
19.2.6 Quantitative Analysis .. 214
19.2.7 2Th Corrections .. 214
19.2.8 Intensity Corrections .. 214
19.2.9 Bondlength penalty functions ... 215
19.2.10 Reporting macros .. 216
19.2.11 Neutron TOF .. 218
19.2.12 Miscalleneous .. 218

20. CHARGE-FLIPPING ... 220

20.1 CHARGE-FLIPPING USAGE ... 222
20.1.1 Perturbations ... 222
20.1.2 The Ewald sphere, weak reflections and CF termination .. 223
20.1.3 Powder data considerations .. 223

20.2 CHARGE-FLIPPING INVESTIGATIONS / TUTORIALS ... 226
20.2.1 Preventing uranium atom solutions using pick_atoms ... 226
20.2.2 The tangent formula on powder data ... 226
20.2.3 Pseudo symmetry – 441 atom oxide ... 226
20.2.4 Origin finding and symmetry_obey_0_to_1 .. 227
20.2.5 symmetry_obey_0_to_1 on poor resolution data ... 227
20.2.6 Sharpening clouds - extend_calculated_sphere_to ... 228
20.2.7 A difficult powder, CF-SUCROSE.INP.. 228
20.2.8 Increasing contrast in R-factors... 229

20.3 CHARGE FLIPPING AND NEUTRON_DATA .. 229
20.4 CHARGE-FLIPPING EXAMPLES ... 230
20.5 KEYWORDS IN DETAIL ... 231

21. INDEXING .. 240

21.1 FIGURE OF MERIT .. 241
21.2 EXTINCTION SUBGROUP DETERMINATION .. 241
21.3 REPROCESSING SOLUTIONS - DET FILES .. 241
21.4 KEYWORDS AND DATA STRUCTURES ... 242
21.5 KEYWORDS IN DETAIL .. 243
21.6 IDENTIFYING DOMINANT ZONES .. 245
21.7 *** PROBABLE CAUSES OF FAILURE ***... 246
21.8 SPACE GROUPS WITH IDENTICAL ABSENCES – EXTINCTION SUBGROUPS 246
21.9 INDEXING EQUATIONS - BACKGROUND .. 248

22. GUI FUNCTIONALITY .. 250

1.1 TOPAS IS DPI AWARE ... 250
1.2 ANTIALIASING AND OPENGL ... 250
1.3 DISPLAYING A PHASE WITH AND WITHOUT BACKGROUND ... 251

Introduction 6

6 Introduction

1.4 HOW ATOMS ARE DISPLAYED IN OPENGL .. 251
1.5 X_CALCULATION_STEP DELETED WHEN CONSTANT X-AXIS STEP SIZE DETECTED 251
1.6 HIDE_PEAK_STICKS .. 251
22.1 TOF X-AXIS CAN BE DISPLAYED AS D-SPACING, Q OR TOF ... 252

22.1.1 Surface plots – 2D with offsets .. 252
22.1.2 Inserting peaks and identifying scans ... 252
22.1.3 2D-offset Surface plots .. 253
22.1.4 2D-offset Planview plots .. 254
22.1.5 OpenGL Surface plots .. 256
22.1.6 OpenGL – Weighted difference for colours ... 257

22.2 NORMALIZING SCANS WITHIN A SCAN WINDOW ... 257
22.3 PLOTTING PHASES ABOVE BACKGROUND ... 257
22.4 PLOTTING FIT_OBJS .. 258
22.5 DISPLAY OF NORMALIZED SIGMAYOBS^2 .. 259
22.6 CUMULATIVE CHI2 .. 259
22.7 CORRELATION MATRIX DISPLAY ... 260
22.8 FADING A STRUCTURE ... 261
22.9 NORMALS PLOT ... 261
22.10 IMPROVEMENTS TO THE GRID ... 262
22.11 MOUSE OPERATION IN OPENGL GRAPHICS ... 263

23. REFERENCES .. 264

Introduction 7

7 Introduction

1. .. INTRODUCTION

This document describes the kernel operation of TOPAS-Academic including its macro language.
The kernel is written in ANSI c++ with internal data structures comprising a tree similar-to an XML
representation. Individual tree nodes correspond to c++ objects; understanding the internal
structures facilitates program operation. Input is through an input file (*.INP) comprising readable
keywords and macros, the latter being groupings of keywords. The kernel pre-processes the INP
file expanding macros as required; the resulting pre-processed file (written to TOPAS.LOG) com-
prises keywords that are operated on by the kernel. On parsing the INP file the kernel creates its
internal data structures. The main tree-node objects are:

xdd...
bkg
str...
xo_Is...
d_Is...
hkl_Is...
fit_obj...

: Background.
: Structure information for Rietveld refinement.
: 2-I values for single line or whole powder pattern fitting.
: d-I values for single line or whole powder pattern fitting.
: Lattice information for Le Bail or Pawley fitting.
: User defined fit models.

str, xo_Is, d_Is and hkl_Is are referred to as "phases" and the peaks of these "phase peaks". A listing
of the data structures is given in section 18.1.

1.1 Conventions

• Keywords look like this.
• Macros look like this.
• Keywords enclosed in square brackets [] are optional.
• Keywords ending in ... indicate that multiple keywords of that type are allowed.
• Text beginning with the character # corresponds to a number.
• Text beginning with the character $ corresponds to a User defined string.
• E after keyword: An equation (i.e. = a+b;) or constant (i.e. 1.245) or a parameter name with a

value (i.e. lp 5.4013) that can be refined.
• !E after keyword: An equation or constant or a parameter name with a value that cannot be

refined.

To avoid input errors, it is useful to differentiate between keywords, macros, parameter names,
and reserved parameter names. The conventions followed are:

Keywords :
Parameter names :

Macro names :
Reserved parameter names :

all lower case
first letter in lower case
first letter in upper case
first letter in upper case

1.2 Input file example (INP format)

The following is an example input file for Rietveld refinement of corundum and fluorite:

Introduction 8

8 Introduction

‘ Rietveld refinement comprising two phases
xdd File_Name.xy

CuKa5(0.001) ‘ Emission profile
Radius(217.5) ‘ Diffractometer radius
LP_Factor(26.4) ‘ Lorentz polarization
Slit_Width(0.1) ‘ Receiving slit width
Divergence(1) ‘ Equatorial divergence
Full_Axial_Model(12, 15, 12, 2.3, 2.3) ‘ Axial divergence
Zero_Error(@, 0)
bkg @ 0 0 0 0 0 0
STR(R-3C, "Corundum Al2O3")

Trigonal(@ 4.759, @ 12.992)
site Al x 0 y 0 z @ 0.3521 occ Al+3 1 beq @ 0.3
site O x @ 0.3062 y 0 z 0.25 occ O-2 1 beq @ 0.3
scale @ 0.001
CS_L(@, 100)
r_bragg 0

STR(Fm-3m, Fluorite)
Cubic(@ 5.464)
site Ca x 0 y 0 z 0 occ Ca 1 beq @ 0.5
site F x 0.25 y 0.25 z 0.25 occ F 1 beq @ 0.5
scale @ 0.001
CS_L(@, 100)
r_bragg 0

The format is case sensitive. Optional indentation can be used to show tree dependencies. Place-
ment of keywords within a tree level is not important. For example, the keyword str signifies that
all information (pertaining to str) occurring between this keyword and the next level of the same
type (in this case str) applies to the first str. All input text streams can have line and/or block com-
ments. A line comment is indicated by the character ' and a block comment by an opening /* and
closing */. Text from the line comment character to the end of the line is ignored. Text within block
comments are ignored; block comments can be nested. Here are some examples:

‘ This is a line comment
space_group C2/c ‘ This is also a line comment
/* This is a block comment.

A block comment can comprise any number of lines. */

On termination of refinement an output file (*.OUT) similar-to the input file is created with refined
values updated.

1.3 Test examples

The directory TEST_EXAMPLES contain examples that can act as templates for creating INP files.
In addition, charge-flipping examples are found in the CF directory and indexing examples in the
INDEXING directory.

1.4 TC-INPS.BAT and the aac$ macro

The batch file TC-INPS.BAT runs through over 150 test examples in a few minutes. These examples
play an important role in program testing. Arguments passed via the command line to the test

Introduction 9

9 Introduction

examples can contain the aac$ macro; if defined aac$ is expanded at the bottom of the INP file.
For example, to terminate refinement after 100 iterations the following could be used:

tc test_examples\pdf\alvo4\rigid "macro aac$ { iters 100 verbose 0 }"

1.5 TOPAS is 64 bit

The command line TC.EXE and the GUI TA.EXE both run on the Windows 64-bit operating system.
This means all available memory can be used.

1.6 Limiting Memory Usage – MaxMem.TXT

Accidental INP file errors coupled with 64-bit address space can lead to excessive memory us-
age. A wrong decimal place in a lattice parameter for example could lead to the generation of
billions of hkls. In cases where all of RAM is used, the Windows 7 and Windows 10 operating sys-
tems hang with the task-manager becoming unresponsive. The reason for the ‘hang’ is due to the
swapping of data/programs to and from virtual memory (typically a swap file on the hard disc) by
the operating system. This ‘hang’ scenario is typically avoided using option (1) below which is the
default. The file MAXMEM.TXT, found in the main TOPAS directory, comprises two floating point
numbers A and B and their use is as follows (all values in Gbytes):

1) If A=0, the maximum allowed memory usage is set to 75% of physical memory.

2) If the number in MAXMEM.TXT is negative, the maximum allowed memory usage is:

Max_Mem_Allowed = Max_Physical_Memory + A

3) If the number in MAXMEM.TXT is positive, the maximum allowed memory usage is:

Max_Mem_Allowed = A

The default value in MAXMEM.TXT is zero which corresponds to case (1). For all cases, if memory
usage exceeds Max_Mem_Allowed then TC.EXE aborts with the message:

Memory allocation limit reached, increase limit in file MaxMem.TXT

TA.EXE also aborts with a message and additionally it creates the empty file called MAXMEM-
CHK.TXT. Checking the time/date stamp of MAXMEM-CHK.TXT reveals whether TA.EXE aborted
due to excessive memory usage.

Parameters 10

10 Parameters

2. .. PARAMETERS

2.1 When is a parameter refined

A parameter is flagged for refinement by giving it a name. The first character can be an upper or
lower-case letter. Subsequent characters can include the underscore character '_' and the num-
bers 0 through 9. For example:

site Zr x 0 y 0 z 0 occ Zr+4 1 beq b1 0.5

Here b1 is a name given to the beq parameter. No restrictions are placed on the length of param-
eter names. The character ! placed before b1, as in !b1, signals that b1 is not to be refined, for ex-
ample:

site Zr x 0 y 0 z 0 occ Zr+4 1 beq !b1 0.5

A parameter can also be flagged for refinement by placing the @ character at the start of its name.
Internally the parameter is given a unique name and treated as an independent parameter. The b1
text in the following is ignored:

site Zr x 0 y 0 z 0 occ Zr+4 1 beq @ 0.5
or, site Zr x 0 y 0 z 0 occ Zr+4 1 beq @b1 0.5

2.2 User defined parameters - the prm keyword

The [prm|local E] keyword defines a new parameter. For example:

prm b1 0.2 ‘ b1 is the name given to this parameter
 ‘ 0.2 is the initial value
site Zr x 0 y 0 z 0 occ Zr+4 0.5 beq = 0.5 + b1;
 occ Ti+4 0.5 beq = 0.3 + b1;

Here b1 is a new parameter that will be refined; this example demonstrates adding a constant to
a set of beq's. Note the use of the '=' sign after the beq keyword; this indicates that the parameter
is in the form of an equation. In the following example, b1 is used but not refined:

prm !b1 0.2
site Zr x 0 y 0 z 0 occ Zr+4 0.5 beq = 0.5 + b1;
 occ Ti+4 0.5 beq = 0.3 + b1;

Parameters can be assigned the following attribute equations that can be functions of other pa-
rameters:

[min !E] [max !E] [del !E] [update !E] [stop_when !E] [val_on_continue !E]

min and max can be used to limit parameter values during refinement, for example:

prm b1 0.2 min 0 max = 10;

Parameters 11

11 Parameters

Here b1 is constrained to within the range 0 to 10. min and max can be equations themselves and
can therefore be functions of other parameters. Limits are very effective in refinement stabiliza-
tion. del is used for calculating numerical derivatives with respect to the calculated pattern; typ-
ically, internal default del values are adequate. Parameter values are updated at the end of an
iteration as follows:

new_Val = old_Val + Change

When update is defined then the following is used:

new_Val = “update equation”

update can additionally be a function of the reserved parameter names Change and Val. The use
of update does not negate min and max. stop_when is a conditional statement used as a stopping
criterion. In this case convergence is determined when stop_when evaluates to a non-zero value
for all defined stop_when attributes, as defined for independent parameters, and when the

chi2_convergence_criteria condition has been met. val_on_continue is evaluated when con-
tinue_after_convergence is defined. It provides a means of changing parameter values after re-
finement convergence where:

new_Val = val_on_continue

Here are example attribute equations as applied to the x parameter:

x @ 0.1234
min = Val - 0.2;
max = Val + 0.2;
update = Val + Rand(0, 1) Change;
stop_when = Abs(Change) < 0.000001;

2.3 Parameter constraints

Equations can be a function of parameter names; this provides a mechanism for introducing lin-
ear and non-linear constraints, for example:

site Zr x 0 y 0 z 0 occ Zr+4 zr 1 beq 0.5
 occ Ti+4 = 1-zr; beq 0.3

Here the zr parameter is used in the equation "= 1-zr;"; this equation defines the Ti+4 site occu-
pancy. Note, equations start with an equal sign and end in a semicolon. Limiting zr with min/max

can be performed as follows:

site Zr x 0 y 0 z 0 occ Zr+4 zr 1 min 0 max 1 beq 0.5
 occ Ti+4 = 1-zr; beq 0.3

Here zr will be constrained to within 0 and 1. An example for constraining the lattice parameters
a, b, c to the same value as required for a cubic lattice is as follows:

a lp 5.4031 b lp 5.4031 c lp 5.4031

Parameters 12

12 Parameters

Parameters with names that are the same must have the same value. An exception is thrown if
the lp parameters were defined with different values. Another means of constraining the three
lattice parameters to the same value is by using equations with the parameter lp defined only
once, or,

a lp 5.4031 b = lp; c = lp;

More general again is the use of the Get function as used in the Cubic macro:

a @ 5.4031 b = Get(a); c = Get(a);

Here the constraints are formulated without the need for a parameter name.

2.4 The local keyword

The local keyword is used for defining named parameters as local to the top, xdd or phase level;
local can simplify complex INP files. The following code fragment:

xdd local a 1
xdd local a 2

has two 'a' parameters; one dependent on the first xdd and the other dependent on the second
xdd. Internally two independent parameters are generated, one for each of the 'a' parameters; this
is necessary as the parameters require separate positions in the A matrix for minimization, cor-
relation matrix, errors etc... In the code fragment:

local a 1 ‘ top level
xdd gauss_fwhm = a; ‘ 1st xdd
xdd gauss_fwhm = a; ‘ 2nd xdd
 local a 2 ‘ xdd level

the 1st xdd is convoluted with a Gaussian with a FWHM of 1 and the 2nd with a Gaussian with a FWHM
of 2. In other words, the 1st gauss_fwhm equation uses the ‘a’ parameter from the top level and the
second gauss_fwhm equation uses the ‘a’ parameter defined in the 2nd xdd. This is analogous, for
example, to the scoping rules found in the c programming language. The following is not valid as
b1 is defined twice but in a different manner.

xdd local a 1 prm b1 = a;
xdd local a 2 prm b1 = a;

The following comprises 4 separate parameters and is valid:

xdd local a 1 local b1 = a;
xdd local a 2 local b1 = a;

2.5 Reporting on equation values

When an equation is used in place of a parameter 'name' and 'value' as in

Parameters 13

13 Parameters

occ Ti+4 = 1-zr;

then it is possible to obtain the value of the equation by placing " : 0" after it, or,

occ Ti+4 = 1-zr; : 0

After refinement the '0' is replaced by the value of the equation. The associated error is also re-
ported when do_errors is defined.

2.6 Naming of equations

Equations can be given a parameter name, for example:

prm !a1 = a2 + a3/2; : 0

Here the a1 parameter represents the equation “a2 + a3/2”. If the value of the equation evaluates
to a constant then a1 would be an independent parameter, otherwise a1 is treated as a dependent
parameter. If the equation evaluates to a constant, then a1 will be refined if the character ‘!’ is not
used. The following equation is valid even though it doesn’t have a parameter name; its value and
error are also reported on termination of refinement.

prm = 2 a1^2 + 3; : 0

Equations in general are not evaluated sequentially, the following:

prm a2 = 2 a1; : 0
prm a1 = 3;

gives on termination of refinement:

prm a2 = 2 a1; : 6
prm a1 = 3;

Non-sequential equation evaluation is possible as parameters cannot be defined more than once
with different values or equations; the following examples lead to redefinition errors:

prm a1 = 2; prm a1 = 3; ‘ redefinition error
prm b1 = 2 b3; prm b1 = b3; ‘ redefinition error

2.7 existing_prm

[existing_prm E]...

Evaluated sequentially and allows for the modification of an existing prm/local parameters, see
for example the macro K_Factor_WP in TOPAS.INC. The following:

local a 1
existing_prm a += 1;
existing_prm a /= 2;
existing_prm a = 3 (a + 1);

Parameters 14

14 Parameters

prm = a; : 0

will give:

prm = a; : 6.00000

Allowed operators for existing_prm are +=, -=, *-, /= and ^=.

2.8 String_To_Variable and Double_To_String functions

The function Double_To_String converts a number to a string. The macro String_To_Variable con-
verts a string to a variable. Together these macros provide flexibility in the creation of INP files
where the numbers of data files and phases are large; here’s an example usage:

prm cs_L_1 100
prm cs_L_2 100
prm cs_G_1 100
prm cs_G_2 100
xdd …

str … local str_ 1
str … local str_ 2

xdd …
str … local str_ 1
str … local str_ 2

for xdds {
for strs {

lor_fwhm = 1 / String_To_Prm(“cs_L_”, Double_To_String(str_));
gauss_fwhm = 1 / String_To_Prm(“cs_G_”, Double_To_String(str_));

}
}

In the above, the local parameters str_ acts like structure type identifiers. The String_To_Variable
function can take any number of strings which are concatenated to form a parameter name. The
Double_To_String takes one parameter which can be either a constant or a variable.

2.9 dummy and dummy_prm keywords

The dummy keyword reads a word from the input stream. dummy_prm is similar except it reads
parameter dependent text. For example, the following text in purple is loaded by dummy_prm and
is ignored by the Kernel.

load xo dummy_prm I
 {
 10 = 1/Max(0.00023, 0.0001); min 10 max = Val 2; @ 100
 ...

2.10 ... Parameter errors and correlation matrix

When do_errors is defined, parameter errors and the correlation matrix are generated at the end
of refinement, see also section 4.8. Errors are reported following parameter values as follows:

Parameters 15

15 Parameters

a lp 5.4031_0.0012

Here the error in the lp parameter is 0.0012. The correlation matrix is identified by C_matrix_nor-
malized and is appended to the OUT file, if it does not already exist, or updated if it does exist.

2.11 ... Default parameter limits and LIMIT_MIN / LIMIT_MAX

Parameters with internal default min/max attributes are shown in Table 2-1. These limits avoid
invalid numerical operations and equally important they stabilize refinement by directing the min-
imization process towards lower 𝜒2 values. Hard limits are avoided where possible and instead
parameter values move within a range during a refinement iteration. Refinement without limits
sometimes fail in reaching a low 𝜒2. User defined min/max limits override default limits; param-
eters defined using prm/local should also be defined with user defined min/max limits. Function-
ality is often realized through standard macros as defined in TOPAS.INC; this is an important file
to view. Almost all prm’s defined within this file have associated limits. For example, the CS_L
macro defines a crystallite size parameter with a min/max of 0.3 and 10000 nm respectively. On
termination of refinement, independent parameters that refined close to their limits are identi-
fied by the text "_LIMIT_MIN_#" or "_LIMIT_MAX_#" appended to the parameter value. The '#' cor-
responds to the limiting value. These warnings can be suppressed using no_LIMIT_warnings.

Table 2-1. Default parameter limits.

Parameter min max

la 1e-5 2 Val + 0.1

lo Max(0.01, Val-0.01) Min(100, Val+0.01)

lh, lg 0.001 5

a, b, c Max(1.5, 0.995 Val - 0.05) 1.005 Val + 0.05

al, be, ga Max(1.5, Val - 0.2) Val + 0.2

scale 1e-11

sh_Cij_prm -2 Abs(Val) - 0.1 2 Abs(Val) + 0.1

occ 0 2 Val + 1

beq Max(-10, Val-10) Min(20, Val+10)

pv_fwhm, h1, h2, spv_h1,
spv_h2

1e-6 2 Val + 20 Peak_Calcula-
tion_Step

pv_lor, spv_l1, spv_l2 0 1

m1, m2 0.75 30

d 1e-6

xo Max(X1, Val - 40 Peak_Calcula-
tion_Step)

Min(X2, Val + 40 Peak_Calcula-
tion_Step)

I 1e-11

z_matrix distance Max(0.5, Val .5) 2 Val

z_matrix angles Val – 90 Val + 90

rotate Val – 180 Val + 180

x, ta, qa, ua Val - 1/Get(a) Val + 1/Get(a)

Parameters 16

16 Parameters

y, tb, qb, ub Val - 1/Get(b) Val + 1/Get(b)

z, tc, qc, uc Val - 1/Get(c) Val + 1/Get(c)

u11, u22, u33 Val If(Val < 0, 2, 0.5) - 0.05 Val If(Val < 0,0.5,2) + 0.05

u12, u13, u23 Val If(Val < 0, 2, 0.5) - 0.025 Val If(Val < 0,0.5,2) + 0.025

filament_length 0.0001 2 Val + 1

sample_length, receiving_slit_length, primary_soller_angle, secondary_soller_angle

2.12 ... Reserved parameter names

Table 2-2 and Table 2-4 lists reserved parameter names that are internally updated when needed.
Table 2-3 details dependences for certain reserved parameter names. An exception is thrown
when a reserved parameter name is used for a User defined parameter name. An example for

weighting using the reserved parameter names of Yobs, Ycalc and X is as follows:

weighting = Abs(Yobs-Ycalc) / (Max(Yobs+Ycalc,1) Max(Yobs,1) Sin(X Deg / 2));

Table 2-2. Reserved parameter names.

Name Description

A_star, B_star, C_star Corresponds to the lengths of the reciprocal lattice vectors.

Change Returns the change in a parameter at the end of a refinement iter-
ation. Change can only appear in the equations update and
stop_when.

D_spacing Corresponds to the d-spacing of phase peaks in Å.

H, K, L, M hkl and multiplicity of phase peaks.

Iter, Cycle, Cycle_Iter Returns the current iteration, the current cycle and the current it-
eration within the current cycle respectively. Can be used in all
equations.

Lam Corresponds to the wavelength lo of the emission profile line with
the largest la value.

Lpa, Lpb, Lpc Corresponds to the a, b and c lattice parameters respectively.

Mi An iterator used for multiplicities. See the PO macro of TOPAS.INC
for an example of its use.

Peak_Calculation_Step Return the calculation step for phase peaks, see x_calcula-
tion_step.

QR_Removed,

QR_Num_Times_Consecutively_Small

Can be used in the quick_refine_remove equation.

R, Ri The distance between two sites R and an iterator Ri. Used in the
equation part of atomic_interaction, box_interaction and grs_inter-
action.

Parameters 17

17 Parameters

Rp, Rs Primary and secondary diffractometer radius respectively.

T Corresponds to the current temperature, can be used in all equa-
tions.

Th Corresponds to the Bragg angle (in radians) of hkl peaks.

X, X1, X2 Corresponds to the measured x-axis, the start and the end of the x-
axis respectively. X is used in fit_obj's equations and the weighting
equation. X1 and X2 can be used in all xdd dependent equation.

Xo Corresponds to the current peak position; this corresponds to 2Th
degrees for x-ray data.

Val Returns the value of the corresponding parameter.

Yobs, Ycalc, SigmaYobs Observed, Calculated and estimated standard deviation in Yobs;
can be used in the weighting equation.

Table 2-3. Parameters that operate on phase peaks; dependencies are not shown.

Keywords that can be a function of H, K, L, M, Xo, Th and D_spacing.

lor_fwhm
gauss_fwhm
hat
one_on_x_conv
exp_conv_const
circles_conv
stacked_hats_conv

user_defined_convolution
th2_offset
scale_pks
h1, h2, m1, m2
spv_h1, spv_h2, spv_l1, spv_l2
pv_lor, pv_fwhm
pk_xo

phase_out, phase_out_X
scale_top_peak
set_top_peak_area

ymin_on_ymax
la, lo, lh, lg
modify_peak_eqn
current_peak_min_x
current_peak_max_x

Table 2-4. Phase intensity reserved parameter names.

Name Description

A01, A11, B01, B11 Used for reporting structure factor details as defined in equations (17-
5a) and (17-5b), see the macros Out_F2_Details and
Out_A01_A11_B01_B11.

Iobs_no_scale_pks

Iobs_no_scale_pks_err

Returns the observed integrated intensity of a phase peak and its as-
sociated error without any scale_pks applied. Iobs_no_scale_pks for
phase peak p is calculated using the Rietveld decomposition formu-
lae, or,

1Iobs_no_scale_pks = Get(scale)
𝐼𝑃 ∑ 𝑃𝑥,𝑝𝑌𝑜𝑏𝑠,𝑥𝑥

𝑌𝑐𝑎𝑙𝑐,𝑥

where Px,p is the phase peak p calculated at the x-axis position x. The
summation x extends over the x-axis extent of the peak p. A good fit
to the observed data results in an Iobs_no_scale_pks being approxi-
mately equal to I_no_scale_pks.

I_no_scale_pks The Integrated intensity without scale_pks equations, or,

Parameters 18

18 Parameters

1I_no_scale_pks = Get(scale) I

I_after_scale_pks The Integrated intensity with scale_pks equations applied.

1I_after_scale_pks = Get(scale) I Get(all_scale_pks)

returns the cumulative value of all scale_pks equations applied to a
phase.

1) I corresponds to I of hkl_Is, xo_Is and d_Is phases or (M Fobs
2) for str phases.

2.13 ... Val and Change reserved parameter names

Val is a reserved parameter name corresponding to the numeric value of a parameter during re-
finement. Change is a reserved parameter name corresponding to the change of a parameter at
the end of an iteration as determined by non-linear least squares. Val can only be used in the at-
tribute equations min, max, del, update, stop_when and val_on_continue. Change can only be used
in the attribute equations update and stop_when. Here are some examples:

min 0.0001
max = 100;
max = 2 Val + 0.1;
del = Val 0.1 + 0.1;
update = Val + Rand(0,1) Change;
stop_when = Abs(Change) < 0.000001;
val_on_continue = Val + Rand(-Pi, Pi);
x @ 0.1234 update = Val + 0.1 ArcTan(Change 10); min=Val-.2; max=Val+.2;

2.14 ... Using local to assist in using “for ... {}” loops

The following parameters have global scope allowing for use in for loops:

march_dollase $Name
spherical_harmonics_hkl $Name
sites_geometry $Name
sites_distance $Name
sites_angle $Name
sites_flatten $Name

The march_dollase parameter, as used in the PO macro, can be constrained to the same value
across two or more structures by giving them the same name, for example:

PO(po1, 0.8, , 1 0 4)

This allows the use of ‘for xdds { for strs { ... }}’; see PO-CONSTRAINED-CREATE.INP and PO-FOR.INP
in the TEST_EXAMPLES\PO-CONSTRAINED directory. Note the use of ‘if Prm_Then(...) { ... }’ rather
than ‘for strs 1 to 1 { … }’ to facilitate the writing of the INP file. The $Name in spherical_harmon-
ics_hkl is local but the spherical harmonics coefficients are global. In the following:

 PO_Spherical_Harmonics(sh2, 8 load sh_Cij_prm {

Parameters 19

19 Parameters

 k00 !sh2_c00 1.0000
 k41 sh2_c41 0.1000
 k61 sh2_c61 -0.2000
 k62 sh2_c62 0.3000
 k81 sh2_c81 -0.4000

})

the sh2 parameter is local to the str and the coefficients k00, k41 etc... are global. This allows the
constraining of coefficients across different structures within ‘for strs’; see POSH-CON-
STRAINED-CREATE.INP and POSH-FOR.INP in the TEST_EXAMPLES\PO-CONSTRAINED directory:

2.15 ... out_dependences and out_dependences_for

[out_dependences $user_string]
[out_dependences_for $user_string $object_name]

out_dependences outputs dependences for the most previously defined prm or local. For exam-
ple, the following:

iters 1

prm d 1
prm e 1
prm f 1
prm c = e + f;
prm b = d + e;
prm a = b + c;
out_dependences a_tag
penalty = a^2;

produces on refinement termination the following in standard output:

out_dependences a_tag prm_10
Object name followed by prm name

prm_10 e
prm_10 f
prm_10 d

out_dependents_for is similar except that it names an object that is not a parameter, for example,
the following lists independent refined parameters associated with the most recently defined
rigid body:

rigid ... out_dependents_for tag_1 rigid

Many $object_name’s can be tagged, these include x, y, z, occ, beq, u11, u22, u33, u12, u13, u23, a,
b, c, al, be, ga, etc. In addition, non-parameters can be tagged, these include site, rigid, sites_re-
strain, lat_prms, gauss_conv, lor_conv, all_scale_pks, th2_offset_eqn etc.

Parameters 20

20 Parameters

2.16 ... The num_runs keyword and preprocessor specifics

[num_runs #]
[out_file = $E]
[system_before_save_OUT { $system_commands }]…
[system_after_save_OUT { $system_commands }]…

Typically, an INP file is run once; num_runs change’s this behavior where the refinement is re-
started and performed again until it is performed num_runs times. Information from one run to
the next can be exchanged via the out keyword and the #include directive. The INP file is read
each Run but not updated when num_runs > 1 and out_file is empty. Equations during a Run could
simplify to a constant, or indeed, the Constant function can be used such that during a Run a pa-
rameter is not refined. From TA.EXE and Launch mode the Rwp graphical plot is appended such
that it looks like continue_after_convergence. The following INP segment:

num_runs 10
yobs_eqn aac##Run_Number##.xy = Gauss(Run_Number, 1 + Run_Number);

min -2 max 20 del 0.01

produces on execution the following:

out_file determines the name of the output file updated on refinement termination. The OUT file
comprises the INP file but with parameter values updated. out_file defaults to the name of the
INP file but with an OUT extension. If num_runs is greater than 1 and out_file is not defined then
no OUT file is saved. This can speed up some refinements when an OUT file is not needed. out_file
is an equation that needs to evaluate to a string; here are some examples:

out_file aac.out ‘ This will throw an exception
out_file = aac.out; ‘ This will throw an exception
out_file = "aac.out";
out_file = String(aac.out);
out_file = If(Get(r_wp) < 10, "aac.out", "");
out_file = If(Get(r_wp) < 10, Concat(String(INP_File), ".OUT"), "");

Parameters 21

21 Parameters

The standard macro Save_Best uses out_file as follows:

macro Save_Best {
 #if (Run_Number == 0)
 prm Best_Rwp_ = 9999;
 #else
 prm Best_Rwp_ = #include Best_Rwp_.txt;
 #endif
 out Best_Rwp_.txt Out(If(Get(r_wp) < Best_Rwp_, Get(r_wp), Best_Rwp_))
 out_file = If(Get(r_wp) < Best_Rwp_, Concat(String(INP_File),".OUT"), "");

}

system_before_save_OUT executes system commands defined in $system_commands string
just before the *.OUT file is updated. The system commands are executed from the directory of
the INP file. $system_commands can comprise any operating system commands. The macro
Backup_INP uses system_before_save_OUT; it’s defined in TOPAS.INC as:

macro Backup_INP {
 system_before_save_OUT {
 copy INP_File##.inp INP_File##.backup
 }
}

system_after_save_OUT executes the system commands defined in $system_commands string
just after the *.OUT file is updated.

2.16.1 Reserved macro names

The following are internally generated macros that can be used in INP files.

ROOT : Returns the root directory of the program.

INP_File : Returns current INP file name without a path or extension.

Run_Number : Returns the current run number.

File_Can_Open($file) : Returns 1 if $file can be opened or 0 of it can't be opened.

Running an INP file called AAC.INP from TC.EXE where AAC.INP comprises:

ROOT INP_File Run_Number File_Can_Open(aac.xy)

and AAC.XY exists will produce in TC.LOG the following:

c:\topas-6\ aac 0 1

2.16.2 The #list directive – creating arrays of macros

#list creates arrays of macros than can be expanded depending on the value of an implied argu-
ment. For example, the following creates three arrays of macros called File_Name, Temperature
and Time.

Parameters 22

22 Parameters

#list File_Name & Temperature(, & la) Time {
 File0001.xy 300 0.0
 { File0002 .xy } 320 10.2 ‘ Line with curly brackets
 File0003.xy 340 21.0
 File0017.xy { 360 + la } 28.9 ‘ Line with curly brackets
 File0107.xy 380 101.2 }

The actual macro invoked depends on the first argument of the macro. In the case of File_Name
and Time the first argument is implied. In the case of Temperature, the first argument is the im-
plied argument. When the macro is invoked the first argument is a #type equation that must
equate to an integer; here’s an example for File_Name:

xdd File_Name(Run_Number)

Curly brackets, as seen in the above #list, can be used as delimiters; the following:

File_Name(1)
Temperature(1,)
Temperature(3, Get(la) + 0.01)

produces on expansion:

File0002 .xy
(320)
(360 + (Get(la) + 0.01))

Using curly brackets as delimiters allows for curly brackets themselves to be part of the macro
body.

2.16.3 The File_Variable and File_Variables macro

The File_Variable macro can be used to run a series of runs with parameters changing in a user
defined manner between runs; the macro is defined in TOPAS.INC as follows:

macro File_Variable(c, x_start, dx) {
 #if (Run_Number == 0)
 #prm c = x_start;
 #else
 #prm c = #include c##.txt;
 #endif
 #prm c##_next = c + dx;
 out c##.txt Out(#out c##_next)
}

Using File_Variable as follows:

File_Variable(occ, 0, 0.1)

will generate a file called OCC.TXT for each Run with values ranging from 0.1 to 1 in steps of 0.1. A
#prm is defined each run with the corresponding values. #out can be used to place the #prm in
the INP file, for example, the following:

Parameters 23

23 Parameters

iters 0
num_runs 11
File_Variable(occ, 0, 0.1)
macro Out_File { Occ##Run_Number##.Out }
out_file Out_File
system_after_save_OUT {
 #if (Run_Number)
 type Out_File >> aac.out
 #else
 type Out_File > aac.out
 #endif
}
yobs_eqn !aac.xy = 1;
 min 10 max 50 del 0.01
 CuKa1(0.0001)
 Out_X_Ycalc(occ##Run_Number##.xy)
 STR(F_M_3_M)
 scale @ 0.0014503208
 Cubic(5.41)
 site Ce1 occ Ce+4 = #out occ; beq 0.2028
 site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq 0.5959

results in eleven *.XY files each generated with a different occupancy for the Ce1 site as deter-
mined by the occ #prm. The names of the files would be OCC0.XY to OCC10.XY. Additionally, using
system_after_save_OUT the file AAC.OUT will contain a concatenation of all the *.OUT files. To it-
erate over two variables, pa and pb say, then the File_Variables macro, defined in TOPAS.INC as:

macro File_Variables(a, a1, a2, da, b, b1, b2, db) {
 #if (Run_Number == 0)
 #prm a = a1;
 #prm b = b1;
 #else
 #prm a = #include a##.txt;
 #prm b = #include b##.txt;
 #endif
 #prm a##_next = If(b >= b2, a + da, a);
 #prm b##_next = If(b >= b2, b1, b + db);
 out a##.txt Out(#out a##_next)
 out b##.txt Out(#out b##_next)
}

can be used as follows:

iters 0
num_runs 36
File_Variables(pa, 0, 1, 0.2, pb, 0, 1, 0.2)
prm !pa = #out pa; prm !pb = #out pb;
out papb.txt append
 out_record out_eqn = pa; out_fmt "(%.1f, "
 out_record out_eqn = pb; out_fmt "%.1f) "
 #if (pb == 1) Out_String("\n") #endif

Parameters 24

24 Parameters

On running the above the PAPB.TXT File contains:

(0.0, 0.0) (0.0, 0.2) (0.0, 0.4) (0.0, 0.6) (0.0, 0.8) (0.0, 1.0)
(0.2, 0.0) (0.2, 0.2) (0.2, 0.4) (0.2, 0.6) (0.2, 0.8) (0.2, 1.0)
(0.4, 0.0) (0.4, 0.2) (0.4, 0.4) (0.4, 0.6) (0.4, 0.8) (0.4, 1.0)
(0.6, 0.0) (0.6, 0.2) (0.6, 0.4) (0.6, 0.6) (0.6, 0.8) (0.6, 1.0)
(0.8, 0.0) (0.8, 0.2) (0.8, 0.4) (0.8, 0.6) (0.8, 0.8) (0.8, 1.0)
(1.0, 0.0) (1.0, 0.2) (1.0, 0.4) (1.0, 0.6) (1.0, 0.8) (1.0, 1.0)

Equation Operators and Functions 25

25 Equation Operators and Functions

3. .. EQUATION OPERATORS AND FUNCTIONS

Table 3-1. Operators and functions supported in equations (case sensitive). In addition, equa-
tions can be a function of User defined parameter names.

Arithmetic

+, -, *, / Plus, Minus, Multiply, Divide. Multiply is optional, x*y = x y

^ x^y, Calculates x to the power of y. Precedence:

x^y^z = (x^y)^z, x^y*z = (x^y)*z, x^y/z = (x^y)/z

Conditional

a == b Returns 1 if a = b

a < b Returns 1 if a < b

a <= b Returns 1 if a ≤ b

a > b Returns 1 if a > b

a >= b Returns 1 if a ≥ b

And(a, b, …) Returns 1 if all arguments are non-zero

Or(a, b, …) Returns 1 if one or more argument is non-zero

Mathematical

ArcCos(x) Returns the arc cos of x (-1 <= x <= 1)

ArcSin(x) Returns the arc sine of x (-1 <= x <= 1)

ArcTan(x) Returns the arc tangent of x

ArcTan2(y,x) Returns arc tangent of y/x

Cos(x) Returns the cosine of x

Cosh(x) Hyperbolic cosine

Erf_Approx(x) Error function

Erfc_Approx Complementary error function

Exp(x) Returns the exponential e to the x

Gamma_Approx(x) Return the Gamma of x

Gamma_Ln_Approx(x) Returns the natural logarithm of the gamma function

Gamma_P(a, x) Returns the incomplete Gamma function P(a, x)

Gamma_Q(a, x) Returns the incomplete Gamma function Q(a, x) = 1-P(a,x)

Ln(x) Returns the natural logarithm of x

Sin(x) Returns the sine of x

Sinh(x) Hyperbolic sine

Sqrt(x) Returns the positive square root

Tan(x) Returns the tangent of x

Tanh(x) Hyperbolic tangent

Special

For(Mi = 0, Mi < M, Mi = Mi+1 , …)

Equation Operators and Functions 26

26 Equation Operators and Functions

Get($keyword) Gets the parameter associated with $keyword

If(conditional_test, return true_eqn, return false_eqn)

Sum(returns summation_eqn, initializer, conditional_test, increment_eqn)

Miscellaneous

Abs(x) Returns the absolute value of x

Break Can be used to terminate loops implied by the equations
atomic_interaction, box_interaction and grs_interaction.

Break_Cycle Can be used to terminate a refinement cycle. For example, a re-
finement cycle can be terminated depending on the value of a pen-
alty as follows:

atomic_interaction ai = (R - 1.3)^2;
penalty = If(ai > 5, Break_Cycle, 0);

Error(p) Returns associated error of parameter p.

Max(a,b,c …) Returns the max of all arguments

Min(a,b,c …) Returns the min of all arguments

Mod(x, y) Returns the modulus of x/y. Mod(x, 0) returns 0

Obj_There(a) Returns 1 if object ‘a’ exists within the current scope

Prm_There(a) Returns 1 if prm/local ‘a’ exists

Rand(a, b) Returns a uniform deviate random number between a & b

Rand_Nor-
mal(mean,stddev)

Returns a random number with a normal distribution with a mean
of ‘mean’ amd standard deviation of ‘stddev’

Round(x) Examples: prm = Round(.1); : 0.00000
prm = Round(.5); : 0.00000
prm = Round(1.6); : 2.00000
prm = Round(-.1); : 0.00000
prm = Round(-.5); : 0.00000
prm = Round(-1.6); : -2.00000

Sign(x) Returns the sign of x, or zero if x = 0

In addition, the following functions are implemented:

AB_Cyl_Corr(R), AL_Cyl_Corr(R)

Returns AB and AL for cylindrical sample intensity correction (Sabine et al., 1998). These func-
tions are used in the macros Cylindrical_I_Correction and Cylindrical_2Th_Correction. Example
CYLCORR.INP demonstrates usage. For a more accurate alternative to the Sabine corrections
see the capillary_diameter_mm convolution.

Bkg_at(x)

Returns the value of the Chubychev polynomial, defined by bkg, at the value x.

Constant(expression)

Equation Operators and Functions 27

27 Equation Operators and Functions

Evaluates ‘expression’ once and then replaces ‘Constant(expression)’ with the corresponding
numeric value. Very useful when the expected change in a parameter insignificantly affects
the value of a dependent equation, see for example the TOF_Exponential macro.

Get_Prm_Error($prm_name)

Returns the error of the parameter $prm_name.

Ln_Normal_x_at_CD(u, s, v, toll)

Returns x value of a Ln normal distribution such that x is at the Cumulative Distribution value
of ‘cd’ where u and s are the mean and standard deviation of the variable’s natural logarithm.
x is calculated with a tolerance in 'cd' of 'toll'; see TEST_EXAMPLES\WPPM\LN-NORMAL-1.INP.

PV_Lor_from_GL(gauss_FWHM, lorentzian_FWHM)

Returns the Lorentzian contribution of a pseudo-Voigt approximation to the Voigt where
gauss_FWHM and lorentzian_FWHM are the FWHMs of the Gaussian and Lorentzian convo-
luted to form the Voigt.

Sites_Geometry_Distance($Name)
Sites_Geometry_Angle($Name)
Sites_Geometry_Dihedral_Angle($Name)

Value_at_X(object, x) : Returns the value of object at X = x. object could be a parameter or a user_y
object. For example, to ensure background is close to the high angle end of a pattern during
PDF-generation, the following could be implemented:

user_y u capillary.xy
fit_obj = (p0 + p1 X) u;
bkg @ 0 0 0
penalty = 1000 (Bkg_at(X2) + (p0 + p1 X2) Value_at_X(u, X2) - Yobs_at(X2))^2;

Voigt_Integral_Breadth_GL(gauss_FWHM, lorentzian_FWHM)

Returns the integral breadth resulting from the convolution of a Gaussian with a Lorentzian
with FWHMs of gauss_FWHM and Lorentzian_FWHM respectively.

Voigt_FWHM_GL(gauss_FWHM, lorentzian_FWHM)

Returns the Voigt FWHM resulting from the convolution of a Gaussian with a Lorentzian with
FWHMs of gauss_FWHM and Lorentzian_FWHM respectively.

Yobs_Avg(x1, x2)

Returns the average value of Yobs between x1 and x2. x1 and x2 is first set to the closest x-
axis data point.

Ycalc_at(x)

Returns the value of Ycalc at x. Zero is returned if x X1 or x X2.

Equation Operators and Functions 28

28 Equation Operators and Functions

Yobs_at(#x)

Returns the Yobs value at the x-axis position #x; can be used in all sub xdd dependent equa-
tions.

Yobs_dx_at(#x):

Returns the step size of the observed data at the x-axis position #x; can be used in all sub xdd
dependent equations. If the step size in the x-axis is equidistant then Yobs_dx_at is converted
to a constant corresponding to the step size in the data.

Yobs_Min(x1, x2)

Returns the minimum value of Yobs between x1 and x2.

3.1 'If' and nested 'If' statements

'If' statements can be used in parameter equations, for example:

prm a 0.1 prm b 0.1
lor_fwhm = If(Mod(H, 2) == 0, a Tan(Th), b Tan(Th));

'If' can also be nested:

prm cs 200 update = If(Val < 10, 10, If(Val > 10000, 10000, Val));

For those who are familiar with if/else statements, the IF THEN ELSE ENDIF macros, as defined in
TOPAS.INC, can be used:

IF a > b THEN
a ‘ return expression value

ELSE
b ‘ return expression value

ENDIF

Min and Max can be used in equations, for example:

prm a 0.1 prm b 0.3
th2_offset = Min(Max(a, b, -0.2), 0.2);

3.2 Floating point exceptions

An exception is thrown when an invalid floating-point operation is encountered, i.e.

Equation Operators and Functions 29

29 Equation Operators and Functions

Divide by zero

Sqrt(x) for x < 0

Ln(x) for x ≤ 0

ArcCos(x) for x < -1 or x > 1

Exp(x) produces an overflow for x ~ 700

(-x)^y for x > 0 and y not an integer

Tan(x) evaluates to Infinity for x = n Pi/2, Abs(n) = 1, 3, 5, …

min/max equations, Min/Max functions or ‘If’ functions can be used to avoid invalid floating-point
operations. Equations can also be manipulated to yield valid floating-point operations, for exam-
ple, Exp(-1000) can be used in place of 1/Exp(1000).

The Minimization Routines 30

30 The Minimization Routines

4. .. THE MINIMIZATION ROUTINES

TMinimization
[line_min] [use_extrapolation] [no_normal_equations] [use_LU]
[approximate_A]

[A_matrix_memory_allowed_in_Mbytes !E]
[A_matrix_elements_tollerance !E]
[A_matrix_report_on]

[chi2 !E]
[chi2_convergence_criteria !E]
[continue_after_convergence]
[bootstrap_errors !Ecycles]

[fraction_of_yobs_to_resample !E]
[determine_values_from_samples]
[resample_from_current_ycalc]

[do_errors]
[do_errors_include_restraints]
[do_errors_include_penalties]
[only_penalties]
[percent_zeros_before_sparse_A #]
[penalty !E]...
[penalties_weighting_K1 !E]
[pen_weight !E]
[quick_refine !E [quick_refine_remove !E]]
[randomize_on_errors]
[restraint !E]
[save_best_chi2]
[use_LU_for_errors]

Get(number_independent_parameters)

The Newton-Raphson non-linear least squares method is used by default with the Marquardt
method (1963) included for stability. The objective function 𝜒2 is written as:

𝜒2 = 𝜒0
2 + 𝜒𝑃

2 + 𝜒𝑅
2 (4-1)

𝑤ℎ𝑒𝑟𝑒 𝜒0
2 = 𝐾 ∑ 𝑤𝑚

𝑀

𝑚=1

 (𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
2

 (4-2)

𝜒𝑃
2 = 𝐾𝐾1𝐾𝑃 ∑ 𝑃𝑝

𝑁𝑝

𝑝=1

 𝜒𝑅
2 = 𝐾𝐾1𝐾𝑅 ∑ 𝑅𝑟

2

𝑁𝑅

𝑟=1

𝐾 =

1

∑ 𝑤𝑚𝑌𝑜,𝑚
2𝑀

𝑚=1

(4-3)

Yo,m and Yc,m are the observed and calculated data respectively at data point m, M the number of
data points, wm the weighting given to data point m which for counting statistics is given by

wm=1/(Yo,m)2 where (Yo,m) is the error in Yo,m, Pp are penalty functions, defined using penalty,

The Minimization Routines 31

31 The Minimization Routines

and Np the number of penalty functions. Rr are restraints, defined using restraint, and NR the num-
ber of restraints. KP and KR are weights applied to the penalty functions and restraints respec-
tively. K1 corresponds to the user defined penalties_weighting_K1 (default value of 1), typical val-
ues range from 0.1 to 2. Penalty functions and Restraints are minimized when there are no ob-
served data Yo; see example ONLYPENA.INP.

The matrix equations are generated by the usual expansion of Yc,m to a first order Taylor series
around the parameter vector p. The size of p corresponds to the number of independent param-
eters N. The penalty functions are expanded to a second order Taylor series around the parame-
ter vector p. The restraints are expanded to a first order Taylor series around the parameter vec-
tor p. The resulting matrix equations are:

A p = Y (4-4)

where A = A0 + AP + AR

and Y = Y0 + YP + YR

𝐴𝑖𝑗 = ∑ 𝑤𝑚

𝜕𝑌𝑐,𝑚

𝜕𝑝𝑖

𝜕𝑌𝑐,𝑚

𝜕𝑝𝑗

𝑀

𝑚=1

𝐴𝑃,𝑖𝑗 =
𝐾𝑃

2
∑

𝜕2𝑃𝑝

𝜕𝑝𝑖𝜕𝑝𝑗

𝑁𝑃

𝑝=1

𝐴𝑅,𝑖𝑗 = 𝐾𝑅 ∑
𝜕𝑅𝑟,𝑖

𝜕𝑝𝑖

𝜕𝑅𝑟,𝑗

𝜕𝑝𝑗

𝑁𝑅

𝑟=1

𝑌𝑜,𝑖 = ∑ 𝑤𝑚

𝑀

𝑚=1

(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
𝜕𝑌𝑐,𝑚

𝜕𝑝𝑖

𝑌𝑃,𝑖 = −
𝐾𝑃

2
∑

𝜕𝑃𝑝

𝜕𝑝𝑖

𝑁𝑃

𝑝=1

𝑌𝑅,𝑖 = −𝐾𝑅 ∑ 𝑅𝑟

𝜕𝑅𝑟

𝜕𝑝𝑖

𝑁𝑅

𝑟=1

(4-5)

The Taylor coefficients p corresponds to changes in the parameters p. Eq. (4-4) represents a
linear set of equations in p that are solved for each iteration of refinement. Off diagonal terms
in AP are not calculated and are instead set to zero. KR and KP are both set to 1 in the absence of
𝜒0

2. When 𝜒0
2 does exist then KP is used to give approximate equal weights to the sum of the in-

verse error terms in the parameters, 0(pi)2 and P(pi)2, calculated from 𝜒𝑃
2 and 𝜒0

2 respectively.
Neglecting the off-diagonal terms results in P(pi)2=1/A0,ii and P(pi)2=1/AP,ii; however, to avoid nu-
merical stabilities KP is written as shown in Eq. (4-6).

𝐾𝑃 = ∑ 𝐼𝑓 (𝑌𝑃,𝑘 < 10−14𝐴0,𝑘𝑘, 0,
1.05𝐴0,𝑘𝑘

(𝐴𝑃,𝑘 + 𝐴0,𝑘𝑘𝑀𝑖𝑛(𝑌𝑃,𝑘𝑘 𝑌𝑜,𝑘𝑘⁄ , 0.05))
)

𝑁𝑃

𝑘=1

(4-6)

k corresponds to independent parameters that are a function of 𝜒𝑃
2. Similarly, for KR we have:

𝐾𝑅 = ∑ 𝐼𝑓 (𝑌𝑅,𝑘 < 10−14𝐴0,𝑘𝑘, 0,
1.05𝐴0,𝑘𝑘

(𝐴𝑅,𝑘 + 𝐴0,𝑘𝑘𝑀𝑖𝑛(𝑌𝑅,𝑘𝑘 𝑌𝑜,𝑘𝑘⁄ , 0.05))
)

𝑁𝑅

𝑘=1

(4-7)

The Minimization Routines 32

32 The Minimization Routines

KR and KP can be modified using pen_weight and the macro Pen_Wt. Pen_Wt calls the user defined
macro Write_Pen_Wt; a definition that mimics the default is:

macro Write_Pen_Wt(Aii, Ai, Pii, Pi) {
pen_weight = If(Pii < 1e-14 Aii,0,1.05 Aii/(Pii+Aii Min(Pi/Ai, 0.05)));

}

Aii and Ai corresponds to A0,ii and Y0,i respectively. For KP then Pii and Pi corresponds to AP,ii and YP,i.
For KR then Pii and Pi corresponds to AR,ii and YP,i. ShelX type restraints can be formulated as fol-
lows:

pen_weight = 1;
penalties_weighting_K1 = (Get(r_wp) / Get(r_exp))^2;
do_errors_include_restraints
save_best_chi2
restraint = Sqrt(w) (yt - y);

where Sqrt(w) is simply the square root of the restraint weight used by ShelX.

4.1 The Conjugate Gradient Solution method

The Bounds Constrained Conjugate Gradient (BCCG) method (Coelho, 2005) incorporating

min/max limits is used for solving the normal equations; it greatly assists in convergence of the
non-linear least squares process. min/max limits are dynamically recalculated and adhered to
during the solution process. For example, to constrain site occupancies on three sites to full oc-
cupancy with three atomic species, each with occupancy of 1, then the following could be defined
(see TEST_EXAMPLES\OCC-CONSTRAIN.INP):

site Ni x 0.11 y 0.22 z 0.33 occ Ni ni1 0.20000 min 0 max 1
 occ Zr zr1 0.30000 min 0 max = 1 - ni1;
 occ Ca ca1 = 1 - ni1 - zr1; : 0.50000

site Zr x 0.21 y 0.32 z 0.43 occ Ni ni2 0.40000 min 0 max = 1 - ni1;

 occ Zr zr2 0.50000 min 0 max = 1 - ni2;
 occ Ca ca2 = 1 - ni2 - zr2; : 0.10000

site Ca x 0.31 y 0.42 z 0.53 occ Ni ni3 = 1 - ni1 - ni2; : 0.40000

 occ Zr zr3 = 1 - zr1 - zr2; : 0.20000
 occ Ca ca3 = 1 - ca1 - ca2; : 0.40000

‘ Occupancy on sites add up to 1
prm = ni1 + zr1 + ca1; : 1.00000
prm = ni2 + zr2 + ca2; : 1.00000
prm = ni3 + zr3 + ca3; : 1.00000

‘ Individual species add up to 1
prm = ni1 + ni2 + ni3; : 1.00000
prm = zr1 + zr2 + zr3; : 1.00000
prm = ca1 + ca2 + ca3; : 1.00000

If the A matrix is not sparse then LU-decomposition can be used instead of the BCCG routine by
defining use_LU. LU-decomposition does not use min/max limits during the solution process and
in addition it requires the full A matrix which may be too memory intensive for problems with

The Minimization Routines 33

33 The Minimization Routines

thousands of parameters. LU-decomposition can also be too slow when the number of parame-
ters is greater than about one thousand. percent_zeros_before_sparse_A defines the percentage
of the A matrix that can be zero before sparse matrix methods are invoked. The default value is
60%.

4.2 The Marquardt method

The Marquardt (1963) method applies a scaling factor , called the Marquardt constant, to the
diagonal elements of the A matrix when the solution to the normal equations of Eq. (5-4) fails to
reduce 𝜒2, or,

Aii,scaled = Aii (1 +)

After applying the Marquardt constant, the normal equations are again solved and 𝜒2 recalcu-
lated. If 𝜒2 increases, then is increased and the scaling process repeated. Repeated failure re-
sults in a very large Marquardt constant; taken to the limit the off-diagonal terms can be ignored
and the solution to the normal equations can be approximated as:

pi = Yi / (Aii (1 +)) (4-8)

Improvements to the automatic determination of the Levenberg-Marquardt constant (cCoelho,
2018) has been made. This is especially the case for objective functions that are far from quad-
ratic and when the BFGS method is used. Large refinements, single crystal protein refinements
for example, should see convergence rates increase.

4.3 Approximating the A matrix - the BFGS method

approximate_A can be used to approximate the A matrix, Eq. (4-4), without the need to calculate
the A matrix dot products. The approximation is based on the BFGS method (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). Approximating A is useful when the calculation of
the A matrix dot products is proving too expensive. When penalties dominate a refinement then
the use of approximate_A may also improve convergence. approximate_A cannot be used with

line_min or use_extrapolation. The single crystal refinement examples of AE14-APPROX-A.INP and

AE1-APPROX-A.INP are cases where the use of approximate_A achieves convergence in less time
than with the calculated A matrix. When using approximate_A the A matrix can be made sparse
by defining A_matrix_memory_allowed_in_Mbytes and/or A_matrix_elements_tollerance. This al-
lows for refinements with large numbers of independent parameters. A_matrix_memory_al-
lowed_in_Mbytes limits the memory used by the A matrix. A_matrix_elements_tollerance #tol re-
moves elements in the A matrix with values less than #tol. The comparison is made againts nor-
malized elements of A such that Aii=1. Typical values for #tol range from 0.0001 to 0.01. A_ma-
trix_memory_allowed_in_Mbytes and A_matrix_elements_tollerance can be used simultanuously.
A_matrix_report_on displays the percentage of non-zero elements in the A matrix.

4.4 Line minimization and Parameter extrapolation

Line minimization, also known as the steepest decent method, is invoked using line_min. It uses
a direction in parameter space given by pi=Yi/Aii to minimize on 𝜒2(𝑝 + 𝑝) by adjusting .

Parameter Extrapolation, use_extrapolation, uses parabolic extrapolation of the parameters as a

The Minimization Routines 34

34 The Minimization Routines

function of iteration, or, is adjusted such that 𝜒2(𝐚𝟐 + 𝐛 + 𝐜) is minimized where for a par-
ticular parameter pi at iteration k we have ai=(y1-2y2+y3)/2, bi=(y3-y1)/2 and ci=y2 where y1=(pi,k-5+pi,k-

4)/2, y2=(pi,k-3+pi,k-2)/2 and y3=(pi,k-1+pi,k-0)/2. Parameter Extrapolation encompasses the last six sets
of parameter values. In cases where both exists then Parameter Extrapolation reduces possible
oscillatory behavior in 𝜒0

2 and 𝜒𝑃
2. Parameter extrapolation when used with Line Minimization can

increase the rate of convergence when refining on penalties only. Line minimization and Parame-
ter Extrapolation have relatively small memory footprints and thus can be useful when the A ma-
trix consumes too much memory. Alternatively, approximate_A can be used. Line minimization
with the full A matrix calculation (approximate_A not defined) can increase the rate of conver-
gence on problems like Pawley refinement. no_normal_equations prevent’s the use of normal
equations in the minimization routine; it is useful when the effects of line minimization are sought
or when there’s a large number of independent parameters.

4.5 Restraints and Penalties

penalty defines a penalty function that can be a function of parameters. Penalties such as bond-
length restraints are useful for stabilizing refinements. Example HOCK.INP uses penalties to min-
imize on the Hock and Schittkowski problem number 65:

prm x1 1 min -4.5 max 4.5 val_on_continue = Rand(-4.5, 4.5); del 0.01
prm x2 1 min -4.5 max 4.5 val_on_continue = Rand(-4.5, 4.5); del 0.01
prm x3 1 min -5.0 max 5.0 val_on_continue = Rand(-5.0, 5.0); del 0.01

‘ Hock and Schittkowski problem number 65 function
penalty = (x1 - x2)^2 + (1/9) (x1 + x2 - 10)^2 + (x3 - 5)^2; : 0

prm contraint_1 = x1^2 + x2^2 + x3^2;
penalty = If(contraint_1 < 48, 0, (contraint_1 - 48)^2); : 0

To apply a penalty function to lattice and crystallite size parameters, which are expected to be
5.41011 Å and 200 nm respectively, the following can be used:

str
Cubic(lp_ceo2 5.41011)
CS_L(cs_l, 200)
penalty = (lp_ceo2 - 5.41011)^2;
penalty = (cs_l - 200)^2;

penalties_weighting_K1 defines the weighting K1 in Eq. (4-3); the default value is 1. A restraint can
be reformulated using a penalty by squaring the restraint, for example:

restraint = a (x - b);

This is equivalent to:

penalty = a^2 (x - b)^2;

In the case of the restraint, the off-diagonal terms AR,ij are calculated when approximate_A (the
BFGS method) is not defined. In the case of the penalty the off-diagonal terms AP,ij is set to zero.
Restraints often converge in less iterations than equivalent penalties due to the use of the off-

The Minimization Routines 35

35 The Minimization Routines

diagonal terms (compare ROSENBROCK-10.INP with ROSENBROCK-10-RESTRAINT.INP). However,
the time to convergence may be greater due to calculation of the off-diagonal restraint terms in
the A matrix. Penalties are useful for functions that are not to be squared; these include negative
functions such as the GRS series atomic interaction (see ALVO4-GRS-AUTO.INP). For efficiency
the AR matrix is treated as a sparse matrix which is combined with A0 (if it exists) where A0 could
be either sparse or dense. When approximate_A is used then the off-diagonal elements of A0, AP,
and AR are not calculated; instead they are approximated by the BFGS method. When approxi-
mate_A is used together with penalties and restraints then this effectively means that the re-
straints are treated as penalties. The following two cases will have similar but not identical con-
vergence.

‘ Case 1

approximate_A
prm p1 1 prm r1 1
penalty !P1 = 5^2 (p1 - 7)^2;
penalty !P2 = 6^2 (p1 - 8)^2;
restraint !R1 = 7 (r1 - 9);
restraint !R2 = 8 (r1 - 10);

‘ Case 2

prm p1 1 prm r1 1
penalty !P1 = 5^2 (p1 - 7)^2;
penalty !P2 = 6^2 (p1 - 8)^2;
penalty !P3 = 7^2 (r1 - 9)^2;
penalty !P4 = 8^2 (r1 - 10)^2;

Diagonal elements of the A matrix

AP,p1p1 = (½) 2(P1+P2)/ p12

AR,r1r1 = (R1/ r1)2 + (R2/ r1)2

AP,p1p1 = (½) 2(P1+P2)/ p12

AP,r1r1 = (½) 2(R12+R22)/ r12

The difference in behaviour between penalties and restraints can be seen by comparing ROSEN-
BROCK-10.INP to ROSENBROCK-10-RESTRAINT.INP. In 500,000 iterations, the former results in 71
iterations on average to convergence and the latter 47 iterations on average to convergence. The
restraints case converges faster as AR,ij elements are calculated. Approximating AR,ij by defining
approximate_A in ROSENBROCK-10-RESTRAINT.INP gives the fastest convergence time wise with
71 iterations on average to convergence. Many penalties however cannot be formulated as a re-
straint, RASTRGIN.INP for example, and in these cases, penalties are necessary.

4.6 Minimizing on penalties only

When there are no observed data or when only_penalties is defined then by default the BFGS
method is used, see examples ROSENBROCK-10.INP and HOCK.INP. For ‘penalties only’ the BFGS

method typically converges faster than line_min/use_extrapolation; this however, for ‘penalties
only’, can be overridden with the use of line_min.

4.7 Saved refined values and save_best_chi2

Values saved on termination of refinement are determined as follows:

• If continue_after_convergence is NOT defined and save_best_chi2 is NOT defined then values
saved corresponds to those of the last iteration.

• If continue_after_convergence is NOT defined and save_best_chi2 is defined then values
saved corresponds to those that gave the best 𝜒2.

The Minimization Routines 36

36 The Minimization Routines

• If continue_after_convergence is defined and save_best_chi2 is NOT defined then values
saved corresponds to those that gave the best Rwp.

• If continue_after_convergence is defined and save_best_chi2 is defined then values saved cor-
responds to those that gave the best 𝜒2.

When there are no penalties or restraints then the best 𝜒2 corresponds to the best Rwp.

4.8 Error calculation

Estimated standard deviations for refined independent parameters are calculated at the end of
refinement. The correlation matrix, if defined using C_matrix_normalized, is updated, if not de-
fined then C_matrix_normalized is created and appeneded to the OUT file.

do_errors: Errors calculated; penalties and restraints NOT included in the A matrix.

do_errors_include_restraints: Errors calculated; restraints included in the A matrix.

do_errors_include_penalties: Errors calculated; penalties included in the A matrix.

4.9 Error determination using SVD and bootstrap errors

Errors have previously been determined from a covariance matrix obtained by LU decomposition.
Version 6 onwards use Singular Value Decomposition (SVD) with resulting errors typically smaller
for strongly correlated parameters. Additionally, SVD errors more closely resemble those ob-
tained by the boot strap method. bootstrap_errors are potentially more accurate as parameter
limits are considered; for example, the fact that intensities are positive is not considered by ma-
trix inversion. use_LU_for_errors forces the use of LU decomposition; LU-decomposition results
in very large errors for intensities that are 100% correlated. The three means of determining er-
rors are demonstrated in a Pawley refinement of Y2O3 in the examples Y2O3A-LU.INP, Y2O3A-
SVD.INP and Y2O3A-BOOT.INP found in the directory TEST_EXAMPLES\SVD-ERRORS.

bootstrap_errors uses the bootstrap method of error determination (Efron & Tibshirani 1986, DiC-
iccio & Efron 1996, Chernick 1999). Bootstrapping comprises a series of refinements each with a
fraction of Yobs modified to obtain a new bootstrap sample. The standard deviations of the re-
fined values then become the bootstrap errors. !Ecycles corresponds to the number of refine-
ment cycles to perform for bootstrapping, it defaults to 200. The resulting bootstrap errors are
written to the *.OUT file. fraction_of_yobs_to_resample corresponds to the fraction of the ob-
served data that is to be replaced each refinement cycle, it defaults to 0.37. Replacement data is
by default obtained randomly from the calculated pattern obtained at the end of the first refine-
ment cycle. If resample_from_current_ycalc is defined, then replacement data are obtained from
the currently completed refinement cycle. The updated Yobs data is additionally modified such
that the change in Rwp is unchanged with respect to the current Ycalc. Parameter values used at
the start of each refinement cycle are obtained from the end of the first refinement cycle.
val_on_continue can additionlly be used to change parameter values at the start of a cycle. If de-
termine_values_from_samples is defined then parameter values at the end of bootstrapping are
updated with values determined from the bootstrapping refinement cycles. Parameter values
obtained at the end of each bootstrap refinement cycle is written to disk in binary format. These

The Minimization Routines 37

37 The Minimization Routines

values are then read and processed at the end of the bootstrap process without storing the val-
ues in memory; the bootstrap process therefore has a small memory footprint.

4.10 ... Error Propagation using prm_with_error

Parameter errors determined outside of refinement can be included and propagated to depend-
ent parameters using prm_with_error. For example, consider the INP snippet (see TEST_EXAM-
PLE\PRM-WITH-ERROR.INP):

xo_Is
 xo 0 I = 10 t i;
 prm i 9.99999`_0.00065 min 1e-6
 prm_with_error !t 1_0.33
 prm t_squared = t^2; : 1.00000`_0.66000

Here t is defined using prm_with_error and with an error of 0.33; this error is used to determine
errors for dependent parameters, such as t_squared, that are a function of t.

4.11 ... xdd_sum and xdd_array

[xdd_array !E] ...
[xdd_sum !E] ...

Example

TEST_EXAMPLES\PDF\GENERATE\I15-DECON.INP

xdd_array calculates and stores an array of values which can then be used in equations which can
in turn be a function of the reserved parameter names of X, Yobs, Ycalc and SIgmaYobs. For ex-
ample, applying the Si atomic scattering factor correction to an xo_Is phase can be performed as
follows:

xo_Is …
xdd_array si_f0 =

2 (‘ atomic scattering data from atmscat.cpp
5.275329 Exp(-2.631338 (Sin(X Pi/360)/Lam)^2) +
3.191038 Exp(-33.730728 (Sin(X Pi/360)/Lam)^2) +
1.511514 Exp(-0.081119 (Sin(X Pi/360)/Lam)^2) +
1.356849 Exp(-86.288643 (Sin(X Pi/360)/Lam)^2) +
2.519114 Exp(-1.170087 (Sin(X Pi/360)/Lam)^2) +
0.145073);

scale_phase_X = si_f0; ‘ apply the atomic scatter factor

The above will give the same result if xdd_array is replaced by prm. The latter does not store the
array and therefore the equation is calculated every time si_f0 is used. Because xdd_array is an
equation, the program also automatically keeps track of its dependencies; this means xdd_array
array is recalculated only when the equation changes; changes can happen, for example, if the
equation is a function of a refinable parameter and the refined parameter changes. This recalcu-
lation only occurs when the array is being referenced; it does not occur at the instance of a de-
pendency change. Use of xdd_array therefore produces fast and efficient INP files.

xdd_sum is similarto xdd_array except an array is not stored; instead the sum of the values of the
array are calculated and stored. Similarto xdd_array, the summed value of xdd_sum is only

The Minimization Routines 38

38 The Minimization Routines

recalculated when necessary. In Version 7, xdd_sum can be nested, for example, to normalize the
intensities between Yobs and Ycalc the following is now possible:

xdd_sum sum_yobs = Yobs;
xdd_sum sum_ycalc = Ycalc;
xdd_sum = (Yobs – Ycalc sum_yobs / sum_ycalc)^2;
xdd_sum num_data_points = 1;: 0 ‘ 0 is replace by the number of data points

4.12 ... Refining on an arbitrary Chi2

chi2 allows for the minimization of a user defined 𝜒2. It can be a function of the reserved param-
eter names X, Yobs, Ycalc and SigmaYobs. In addition, xdd_sum can be a function of these re-
served parameter names. To, for example, define a normal least squares refinement the following
can be used:

xdd ...
xdd_sum denominator = Yobs;
xdd_sum numerator = (Yobs - Ycalc)^2 / Max(Yobs, 1);
chi2 = 100 Sqrt(numerator / denominator);

In refining on an arbitrary chi2 the first and second derivatives of chi2 with respect to each inde-
pendent parameter is required. To do this fast, Ycalc within chi2 is approximated with a first order
Taylor approximation around the parameter vector p. This approximation, for various formula-
tions of chi2, has yielded good convergence even for non-linear parameters. To summarize:

• chi2 is treated as a penalty.

• For each independent parameter, a definite minimum in chi2 is bracketed; inverse parabolic
interpolation is then used to determine the minima of chi2 with respect to that parameter. In
the calculation of chi2, Ycalc is replaced with its first order Taylor approximation and thus the
full Ycalc is only calculated once per refinement iteration and not 100s of times.

• Finding the minima and the curvature of chi2 with respect to each parameter yields 1st and 2nd
order derivatives of chi2 with respect to each parameter.

• The BFGS method (approximate_A) is then used to solve the resulting linear equations with off
diagonal terms approximated according to the BFGS method.

• The BCCG method incorporating the Marquardt method with automatic Marquardt constant
determination is used to solve the matrix equations.

The Rietveld refinement example of TEST_EXAMPLES\CHI2-CEO2.INP demonstrates various sce-
narios:

Case 1) Here’s output when NOT using chi2.

 0 Time 0.05 Rwp 26.630 0.000 MC 0.00 0
 1 Time 0.06 Rwp 16.651 -9.979 MC 0.06 1
 2 Time 0.06 Rwp 7.510 -9.141 MC 0.02 1
 3 Time 0.08 Rwp 6.955 -0.556 MC 0.01 1
 4 Time 0.08 Rwp 6.943 -0.011 MC 0.00 1
 5 Time 0.08 Rwp 6.923 -0.020 MC 0.00 1
 6 Time 0.09 Rwp 6.923 -0.000 MC 0.18 1
--- 0.094 seconds ---

The Minimization Routines 39

39 The Minimization Routines

Case 2) Here’s output when NOT using chi2 but using approximate_A.

 0 Time 0.05 Rwp 26.630 0.000 MC 0.00 0
 1 Time 0.06 Rwp 16.883 -9.747 MC 0.00 0
 ...
 16 Time 0.13 Rwp 6.950 -0.002 MC 0.04 1
 17 Time 0.14 Rwp 6.949 -0.002 MC 0.09 1
 18 Time 0.14 Rwp 6.949 -0.000 MC 0.29 1
--- 0.14 seconds ---

Case 3) Here’s output using chi2 defined for normal least squares.

 0 Time 0.03 Rwp 26.630 0.000 MC 0.00 0 P 26.63020
 1 Time 0.06 Rwp 15.897 -10.733 MC 0.00 0 P 15.89696
 ...
 13 Time 0.33 Rwp 6.974 -0.021 MC 0.00 1 P 6.97366
 14 Time 0.34 Rwp 6.958 -0.016 MC 0.00 1 P 6.95755
 15 Time 0.38 Rwp 6.951 -0.006 MC 0.00 1 P 6.95122

The chi2 case (3) looks similar-to case (2); however, the path towards the minima is different as
the chi2 procedure is very different to normal least squares refinement.

4.13 ... Informing on unrefined parameters

Parameters that do not take part in refinement are reported, for example, the following:

prm a 1 prm b 1

where a and b are not used in any equations that are part of the refinement will result in the out-
put:

Number of independent parameters not taking part in refinement: 2
prm_10: a
prm_10: b

The val_on_continue attribute of unrefined parameters are executed at the end of convergence.
It can be useful, for example,

prm a 1 val_on_continue = b = 2; ‘ this sets the b parameter to 2

4.14 ... Summary, Iteration and Refinement Cycle

Table 4-1 shows various keyword usages for typical refinement problems. The term “refinement
cycle” is used to describe a single convergence. The reserved parameter Cycle returns the current
refinement cycle with counting starting at zero. The reserved parameter Cycle_Iter returns the
current iteration within the current Cycle with counting starting at zero.

Table 4-1. Keyword sequences for various refinement types.

Refinement type Keywords to use Comments

Rietveld refinement.
No penalties.

 Marquardt refinement.
A matrix calculation.

The Minimization Routines 40

40 The Minimization Routines

Rietveld refinement with a
moderate number of penal-
ties.

line_min
(Maybe)

Line minimization used if line_min.
Marquardt refinement.
A matrix calculation.

Rietveld refinement domi-
nated by penalties.

approximate_A BFGS method of refinement.
A matrix approximation.

Pawley refinement. line_min Line minimization.
Marquardt refinement.
A matrix calculation.

Penalties only. BFGS method of refinement.
A matrix approximation.

Refinements with a large
number of parameters.

approximate_A BFGS method of refinement.
A matrix approximation.

4.15 ... quick_refine and computational issues

The computationally dominant factor of Eq. (4-5) is problem dependent. For Rietveld refinement
with a moderate number of parameters then the calculation of the peak parameter derivatives
may well be the most expensive. On the other hand, for Rietveld refinement with a large number
of structural parameters and data points then the calculation of the A1,ij dot products would be
the dominant factor, where, the number of operations scale by M(N2+N)/2. Before the develop-
ment of the BCCG routine (Coelho, 2005), the solution to the normal equations, Eq. (4-4), was also
very expensive. For structure solution from powder data by simulated annealing,
yobs_to_xo_posn_yobs can be used to reduce the number of data points M which reduces the
number of operations in the A1,ij dot products, see the Decompose macro in example CIME-DECOM-
POSE.INP. quick_refine removes parameters during a refinement cycle thus shrinking the size of
the A matrix by reducing N and hence speeding up refinement iterations. Parameters are re-
moved if the condition defined in Eq. (4-9) is met for three consecutive iterations.

∆𝑝𝑖 < 0.01 quick_refine (𝐾 𝑁 𝑌𝑖)⁄ (4-9)

Alternatively, parameters can be removed or reinstated during a refinement cycle using quick_re-
fine_remove. This keyword provides a means of performing block refining. If quick_refine_remove
is not defined, then all parameters are reinstated at the start of refinement cycles. Use of
quick_refine speeds up simulated annealing, see for example the macro Auto_T which is used in
example AE1-AUTO.INP. All refined parameters are reinstated for refinement at the start of sub-
sequent cycles. Large quick_refine values aggressively removes parameters and convergence to
low 𝜒2 maybe hindered. A value of 0.1 works well. quick_refine has the following consequences:

• If parameters are not reinstated using quick_refine_remove then 𝜒2 does not get to its lowest
possible value for a particular refinement cycle.

• The degree of parameter randomization increases with increasing values of quick_refine. Ran-
domization should therefore be reduced as quick_refine increases. Alternatively

The Minimization Routines 41

41 The Minimization Routines

randomize_on_errros can be used which automatically determines the amount a parameter is
randomized.

If quick_refine_remove evaluates to a non-zero value then the associated parameter is removed
from refinement, similarly parameters are reinstated if quick_refine_remove evaluates to zero.
quick_refine_remove can be a function of the reserved parameters QR_Removed or
QR_Num_Times_Consecutively_Small and additionally global reserved parameter names such as
Cycle_Iter, Cycle and T. If quick_refine_remove is not defined, then the removal scheme of Eq. (4-
9) is used and parameters are not reinstated until the next refinement cycle. In most refinements
the following will produce close to the lowest 𝜒2 and in a short time period (see for example PAW-
LEY1.INP).

quick_refine 0.1
 quick_refine_remove =
 IF QR_Removed THEN
 0 ‘ reinstate the parameter
 ELSE
 IF QR_Num_Times_Consecutively_Small > 2 THEN
 1 ‘ remove the parameter
 ELSE
 0 ‘ dont remove the parameter
 ENDIF
 ENDIF;

4.16 ... Simulated annealing and Auto_T

Refinement is continued after convergence when continue_after_convergence is defined. Before
continuing the following actions are performed:

• val_on_continue equations for independent parameters are evaluated.

• randomize_on_errors processes are performed.

• rand_xyz processes are performed.

When val_on_continue is defined, the corresponding parameter is not randomized according to
randomize_on_errors. Simulated annealing is invoked using continue_after_convergence. It is
sometimes difficult to formulate optimum val_on_continue functions; this is especially true in
structure solution using rigid bodies where optimum randomization of the rigid body parameters
can be difficult to ascertain. randomize_on_errors is a means of automatically randomizing pa-
rameters based on the approximate errors in the parameters as given in Eq. (4-10), where T is the
current temperature and K is as defined in Eq. (4-3).

∆𝑝𝑖 = 𝑄 𝑆𝑖𝑔𝑛(𝑅𝑎𝑛𝑑(−1,1))√0.02 𝑇 (𝐾 𝐴𝑖𝑖)⁄ (4-10)

Q is a scaling factor determined such that convergence to a previous parameter configuration

occurs 7.5% of the time on average. When randomize_on_errors is used, relative variation in tem-
perature(s) are significant and not absolute values. The macro Auto_T includes quick_refine, ran-
domize_on_errors and a temperature regime. It has shown to be adequate for a wide range of sim-
ulated annealing examples, see example CIME-Z-AUTO.INP.

The Minimization Routines 42

42 The Minimization Routines

4.17 ... Adaptive step size using randomize_on_errors

Use of randomize_on_errors result in an adaptive-step-size determination during simulated an-
nealing; in many cases the complex temperature regime found in the macro Auto_T can be re-
placed with a single temperature. The example CIME-Z-AUTO.INP demonstrates random-
ize_on_errors by using a very incorrect starting temperature of 0.1; the program quickly modifies
the temperature to a more appropriate value. Output lines such as:

Breaking - randomize on errors revisit

indicate that a parameter configuration has been revisited and the temperature will be internally
adjusted. Note, with randomize_on_errors, relative temperature values are pertinent and not ab-
solute values.

4.18 ... Criteria of fit

Trwp
[r_p #] [r_wp #] [r_exp #] [gof #] [r_p_dash #] [r_wp_dash #] [r_exp_dash #]
[weighted_Durbin_Watson #]

Global and xdd dependent refinement indicators. Keywords ending in “_dash” correspond to back-
ground subtracted values.

Table 4-2. Criteria of fit (Young , 1993). Yo,m and Yc,m are the observed and calculated data re-
spectively at data point m; Bkgm the background, M the number of data points, N the number
of parameters, wm the weighting given to data point m; for counting statistics wm=1/(Yo,m)2
where (Yo,m) is the error in Yo,m. And Io,k and Ic,k the observed and calculated intensities of the
kth reflection. 1) background corrected.

R-pattern, Rp'
𝑅𝑝 =

∑|𝑌𝑜,𝑚 − 𝑌𝑐,𝑚|

∑ 𝑌𝑜,𝑚
 𝑅𝑝

′ =
∑|𝑌𝑜,𝑚 − 𝑌𝑐,𝑚|

∑|𝑌𝑜,𝑚 − 𝐵𝑘𝑔𝑚|

R-weighted pattern,
Rwp, 1Rwp' 𝑅𝑤𝑝 = √

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
2

∑ 𝑤𝑚𝑌𝑜,𝑚
2

 𝑅𝑤𝑝
′ = √

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)
2

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝐵𝑘𝑔𝑚)
2

R-expected, 1Rexp
’

𝑅𝑒𝑥𝑝 = √
𝑀 − 𝑁

∑ 𝑤𝑚𝑌𝑜,𝑚
2

 𝑅𝑒𝑥𝑝
′ = √

𝑀 − 𝑁

∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝐵𝑘𝑔𝑚)
2

Goodness of fit, GOF

𝐺𝑂𝐹 = 𝑐ℎ𝑖 =
𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
= √∑ 𝑤𝑚(𝑌𝑜,𝑚 − 𝑌𝑐,𝑚)

2

𝑀 − 𝑁

R-Bragg
𝑅𝐵 =

∑|𝐼𝑜,𝑘 − 𝐼𝑐,𝑘|

∑ 𝐼𝑜,𝑘

The Minimization Routines 43

43 The Minimization Routines

Durbin-Watson, d,
1971; Hill & Flack,
1987

𝑑 =
∑ (𝛥𝑌𝑚 − 𝛥𝑌𝑚−1)2𝑀

𝑚=2

∑ (𝛥𝑌𝑚)2𝑀
𝑚=1

 ; Δ𝑌𝑚 = 𝑌𝑜,𝑚 − 𝑌𝑐,𝑚

Peak Generation and "peak_type" 44

44 Peak Generation and "peak_type"

5. .. PEAK GENERATION AND "PEAK_TYPE"

Convolution implies integration; a function analytically integrated is exact whereas numerical in-
tegration is an approximation with an accuracy dependent on the step size used for integration.
Accurate numerical convolution is used when analytical convolution is not possible; this makes it
possible to include complex functions in the generation of peak shapes. Laboratory instrument
aberration functions mostly require numerical convolution. This process of convolution, from a
fundamental-parameters perspective (Cheary & Coelho, 1992; Cheary et al., 2004), is an approxi-
mation; second order effects and higher are typically neglected. These approximations are valid
except for extreme cases that are unlikely to exist in practice, for example, axial divergence with
Soller slits acceptance angles that are greater than about 12 degrees.

5.1 Source emission profiles

Generation of the emission profile is the first step in peak generation. It comprises EM lines, EMk,

each of which is a Voigt comprising the parameters la, lo, lh and lg. The reserved parameter name
Lam is assigned the lo value of the EMk line with the largest la value, this EMk will be called EMREF.
It is used to calculate d-spacings. The interpretation of EM data is dependent on peak_type. For
all peak types, the position 2k calculated for an emission line for a Bragg position of 2 is deter-
mined as:

2𝜃 = 𝐴𝑟𝑐𝑆𝑖𝑛 (
𝐸𝑀(𝑘, 𝑙𝑜)

2𝑑
)

360

𝜋
 where 2𝑑 =

𝐸𝑀𝑅𝐸𝐹(𝑙𝑜)

𝑆𝑖𝑛(𝜃)

2 for xo_Is phases corresponds to the xo parameter. 2 for d_Is phases is given by the Bragg
equation 2 = ArcSin(Lam/(2 d)) 360/Pi where d corresponds to the value of the d parameter. 2

values for str and hkl_Is phases are calculated from the lattice parameters. The FWHWk in °2 for
an EMk line is determined from the relations provided in Table 5-1. When no_th_dependence is de-
fined then the calculation of 2k is determined from

2k = 2 + EM(lo, i)

The macro No_Th_Dependence can be used when refining on non-X-ray data or fitting to negative

2 values (see example NEGX.INP). The x-axis extent (x1, x2) to which an EM line is calculated is
determined by:

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐸𝑀(𝑖, 𝑥 = 𝑥1 = 𝑥2)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐸𝑀𝑅𝐸𝐹(𝑥 = 0)
= 𝑦𝑚𝑖𝑛_𝑜𝑛_𝑦𝑚𝑎𝑥

The default for ymin_on_ymax is 0.001. Emission profile data have been taken from Hölzer et al.
(1997) and are stored in *.LAM files in the LAM directory.

Table 5-1. FWHWk in °2 for an EMk line for the different peak types.

FP peak type 𝐹𝑊𝐻𝑀𝑘 = (
𝐸𝑀(𝑘, 𝑙ℎ)

𝐿𝐴𝑀
)

𝑇𝑎𝑛(𝜃)360

𝜋

Peak Generation and "peak_type" 45

45 Peak Generation and "peak_type"

PV peak type 𝐹𝑊𝐻𝑀𝑘 =
pv_fwhm 𝐸𝑀(𝑘, 𝑙ℎ)

𝐸𝑀𝑅𝐸𝐹(𝑙ℎ)

SPVII peak type 𝐹𝑊𝐻𝑀𝑘 =
 (ℎ1 + ℎ2)𝐸𝑀(𝑘, 𝑙ℎ)

𝐸𝑀𝑅𝐸𝐹(𝑙ℎ)

SPV peak type 𝐹𝑊𝐻𝑀𝑘 =
 (𝑠𝑝𝑣ℎ1

+ 𝑠𝑝𝑣ℎ2
)𝐸𝑀(𝑘, 𝑙ℎ)

𝐸𝑀𝑅𝐸𝐹(𝑙ℎ)

5.2 Peak generation and peak types

Phase peaks P are generated as follows:

P = Get(scale) Get(all_scale_pks) EM(peak_type) Convolutions (5-1)

where the emission profile (EM) is first generated with emission profile lines of type peak_type;
the symbol denotes convolution. Peaks are then convoluted with any defined convolutions,
multiplied by the scale parameter, multiplied by any defined scale_pks, and then multiplied by an
intensity parameter. For xo_Is, d_Is and hkl_Is phases the intensity is given by the I parameter.
For str phases it corresponds to the square of the structure factor F2(hkl). Convolutions are nor-
malized and do not change the area under a peak except for the capillary_diameter_mm and
lpsd_th2_angular_range_degrees convolutions. The area under the emission profile is determined
by the sum of the la parameters; typically, they add up to 1. The definitions of the pseudo-Voigt
and PearsonVII functions are provided in Table 5-2.

Table 5-2. Unit area peak types. x corresponds to (2−2k) where 2k is the position of the kth
reflection. fwhm corresponds to the Full Width at Half Maximum. is the PV mixing parameter.
The ‘1’ and ‘2’ subscripts corresponds to the left and right of the split functions.

Gaussian

𝐺𝑈𝐴(𝑥) = (
𝑔1

𝑓𝑤ℎ𝑚
) 𝐸𝑥𝑝 (

−𝑔2𝑥2

𝑓𝑤ℎ𝑚2
), 𝑔1 = 2√

𝐿𝑛(2)

𝜋
, 𝑔2 = 4𝐿𝑛(2)

Lorentzian

𝐿𝑈𝐴(𝑥) =
(

𝑙1

𝑓𝑤ℎ𝑚
)

(1 +
𝑙2𝑥2

𝑓𝑤ℎ𝑚2)
, 𝑙1 =

2

π
, 𝑙2 = 4

PseudoVoigt 𝑃𝑉 = 𝜂𝐿𝑈𝐴(𝑥) + (1 − 𝜂)𝐺𝑈𝐴(𝑥)

Peak Generation and "peak_type" 46

46 Peak Generation and "peak_type"

Split PearsonVII

 SPVII

𝑆𝑃𝑉𝐼𝐼 = 𝑃𝑉𝐼𝐼𝐿𝑒𝑓𝑡 + 𝑃𝑉𝐼𝐼𝑅𝑖𝑔ℎ𝑡

𝑃𝑉𝐼𝐼𝐿𝑒𝑓𝑡 = 𝑎−1(1 + 𝑏1𝑥2)−𝑚1 , for (−∞ < 𝑥 < 0)

𝑃𝑉𝐼𝐼𝑅𝑖𝑔ℎ𝑡 = 𝑎−1(1 + 𝑏2𝑥2)−𝑚2 , for (0 < 𝑥 < ∞)

𝑎 = ½ 𝛤(½) (
𝛤(𝑚1 − ½)

𝛤(𝑚1)√𝑏1

+
𝛤(𝑚2 − ½)

𝛤(𝑚2)√𝑏2

)

𝑏1 = (2
1

𝑚1 − 1) ℎ1
−2, 𝑏2 = (2

1
𝑚2 − 1) ℎ2

−2

𝑓𝑤ℎ𝑚1 = 2 ℎ1, 𝑓𝑤ℎ𝑚2 = 2 ℎ2, 𝑓𝑤ℎ𝑚 = ℎ1+ ℎ2

Split PseudoVoigt

 SPV
𝑆𝑃𝑉 =

2(𝑃𝑉𝐿𝑒𝑓𝑡 + 𝑎 𝑃𝑉𝑅𝑖𝑔ℎ𝑡)

1 + 𝑎

𝑃𝑉𝐿𝑒𝑓𝑡 = 𝑃𝑉(ℎ1, 𝜂1), for (−∞ < 𝑥 < 0)

𝑃𝑉𝑅𝑖𝑔ℎ𝑡 = 𝑃𝑉(ℎ2, 𝜂2), for (0 < 𝑥 < ∞)

𝑎 =
𝑃𝑉𝐿𝑒𝑓𝑡(𝑥 = 0)

𝑃𝑉𝑅𝑖𝑔ℎ𝑡(𝑥 = 0)

𝑓𝑤ℎ𝑚1 = 2 ℎ1, 𝑓𝑤ℎ𝑚2 = 2 ℎ2, 𝑓𝑤ℎ𝑚 = ℎ1+ ℎ2

Lorentzian and Gaussian convolutions using lor_fwhm and gauss_fwhm equations are analytically
convoluted with FP and PV peak types and numerically convoluted with the SPVII and SPV peak
types. These numerical convolutions have a high degree of accuracy as they comprise analytical
Lorentzian and Gaussian functions convoluted with straight line segments. For FP and PV peak
types, the first defined hat convolution is convoluted analytically. Additional hat convolutions for
all peak types are convoluted numerically. For classic analytical full pattern fitting the macros
PV_Peak_Type, PVII_Peak_Type, TCHZ_Peak_Type can be used. These macros use the following
relationships to describe profile width as a function of 2.

PV_Peak_Type

fwhm = ha + hb tan() + hc/cos()

 = lora + lorb tan() + lorc/cos()

where ha, hb, hc, lora, lorb, lorc are refine-
able parameters.

PVII_Peak_Type

fwhm1 = fwhm2 = ha + hb tan() + hc/cos()

m1 = m2 = 0.6 + ma + mb tan() + mc/cos()

where ha, hb, hc, ma, mb, mc are refineable pa-
rameters.

TCHZ_Peak_Type: The modified Thompson-Cox-Hastings pseudo-Voigt "TCHZ" is defined as
(e.g. Young, 1993, see example ALVO4_TCH.INP):

 = 1.36603 q - 0.47719 q2 + 0.1116 q3

where q = L /
 = (G

5 + AG
4L + BG

3L
2 + CG

2L
3 + DGL

4 + L
5)0.2 = fwhm

A = 2.69269, B = 2.42843, C = 4.47163, D = 0.07842
G = (U tan2 + V tan + W + Z / cos2)0.5

Peak Generation and "peak_type" 47

47 Peak Generation and "peak_type"

L = X tan +Y / cos

with U, V, W, X, Y, Z as refined parameters.

5.3 Convolution and the peak generation stack

The emission profile of a peak P0 of a certain peak type (i.e. FP, PV etc…) is first calculated and
placed onto a ‘Peak calculation stack’. P0 analytically includes lor_fwhm and gauss_fwhm convo-
lutions for FP and PV peak types and additionally one hat convolution if defined; the hat convo-
lution is included analytically only if its corresponding num_hats has a value of 1 and if it does not
take part in stack operations. Further defined convolutions are convoluted with the top member
of the stack. The last convolution should leave the stack with one entry representing the final
peak shape. The following keywords allow for manipulation of the Peak calculation stack:

[push_peak]...

[bring_2nd_peak_to_top]...

[bring_n_peak_to_top !E]...

[add_pop_1st_2nd_peak]...

[scale_top_peak E]...

[set_top_peak_area E]...

push_peak duplicates the top of the stack; bring_2nd_peak_to_top brings the second entry to the
top of the stack, bring_n_peak_to_top brings the nth peak to the top (n=0 corresponds to the top
of the stack) and add_pop_1st_2nd_peak adds the top entry to the second most recent entry and
then pops the stack. scale_top_peak scales the peak at the top of the stack. As an example, con-
sider the generation of back-to-back exponentials as required by GSAS time of flight peak shape
3:

push_peak
 prm a0 481.71904 del = 0.05 Val + 2;
 prm a1 -241.87060 del = 0.05 Val + 2;
 exp_conv_const = a0 + a1 / D_spacing;
bring_2nd_peak_to_top
 prm b0 -3.62905 del = 0.05 Val + 2;
 prm b1 6.44536 del = 0.05 Val + 2;
 exp_conv_const = b0 + b1 / D_spacing^4;
add_pop_1st_2nd_peak

The first statement push_peak pushes P0 onto the stack leaving two peaks on the stack:

Stack = P0, P0

The top member is then convoluted by the first exp_conv_const convolution, or;

Stack = P0, P0 exp_conv_const

where denotes convolution. bring_2nd_peak_to_top results in the following:

Stack = P0 exp_conv_const, P0

and the next convolution results in:

Peak Generation and "peak_type" 48

48 Peak Generation and "peak_type"

Stack = P0 exp_conv_const, P0 exp_conv_const

Thus, the stack contains two peaks convoluted with exponentials. The last statement
add_pop_1st_2nd_peak produces:

Stack = P0 exp_conv_const + P0 exp_conv_const

Convolutions applied to peaks are normalized after convolution. Thus, the following, from WIF
David’s macro wifd_mic_moderator, will give unintended peak shapes:

push_peak ‘ first peak
scale_top_peak = 1 - storage

bring_2nd_peak_to_top ‘ second peak
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
scale_top_peak = storage;

add_pop_1st_2nd_peak

where the ratio of the areas of the first peak to the second peak won’t be (1-storage)/storage.
This can be remedied by normalizing the exp_conv_const aberration as follows:

push_peak
scale_top_peak = 1 - storage;

bring_2nd_peak_to_top
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
scale_top_peak = storage Yobs_dx_at(Xo);

add_pop_1st_2nd_peak

However, not all aberrations are easily normalized; set_top_peak_area overcomes this problem
by normalizing the area itself in situ. The INP segment can now be written as:

push_peak
set_top_peak_area = 1 - storage;

bring_2nd_peak_to_top
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
set_top_peak_area = storage;

add_pop_1st_2nd_peak

5.4 Speed / Accuracy and peak_buffer_step

For computational efficiency, phase peaks are calculated at predefined 2 intervals in a “peaks
buffer”. In between peaks are determined by stretching and interpolating. Use of the peaks buffer
dramatically reduces the number of peaks calculated. Typically, no more than 50 to 100 peaks are
necessary to accurately describe peaks across a whole diffraction pattern. The following key-
words affect the accuracy of phase peaks:

[peak_buffer_step !E]

[convolution_step #1]

[ymin_on_ymax #]

[aberration_range_change_allowed !E]

Default values for these are typically adequate. peak_buffer_step determines the maximum x-
axis spacing between peaks in the peaks buffer, it has a default value of

Peak Generation and "peak_type" 49

49 Peak Generation and "peak_type"

500*Peak_Calculation_Step. A value of zero will force the calculation of a new peak in the peaks
buffer for each peak of the phase. Note that peaks are not calculated for x-axis regions that are
void of phase peaks. convolution_step defines an integer corresponding to the number of calcu-
lated data points per measurement data point used to calculate the peaks in the peaks buffer,
see x_calculation_step. Increasing the value for convolution_step improves accuracy for data
with large step sizes or for peaks that have less than 7 data points across the FWHM.
ymin_on_ymax determines the x-axis extents of a peak (see also section 5.1). aberra-
tion_range_change_allowed describes the maximum allowed change in the x-axis extent of a con-
volution aberration before a new peak is calculated for the peaks buffer. For example, in the case
of axial_conv the spacing between peaks in the peaks buffer should be small at low angles and
large at high angles. aberration_range_change_allowed is a dependent of the peak type parame-
ters and convolutions as shown in Table 5-3. Small values for aberration_range_change_allowed
reduces the spacing between peaks in the peaks buffer and subsequently increase the number of
peaks in the peaks buffer.

Table 5-3. Default values for aberration_range_change_allowed.

Parameter Default aberration_range_change_allowed

m1, m2 0.05

pv_lor, spv_l1, spv_l2 0.01

h1, h2, pv_fwhm, spv_h1, spv_h2 Peak_Calculation_Step

hat, axial_conv, whole_hat, half_hat Peak_Calculation_Step

one_on_x_conv, exp_conv_const, circles_conv Peak_Calculation_Step

lor_fwhm, gauss_fwhm Peak_Calculation_Step

5.5 The peaks buffer, speed and memory considerations

Anisotropic peak shapes result in the peaks buffer holding as many peaks as there are hkls. For
problems with 100,000s of peaks the calculation time and storage of the peaks buffer can be pro-
hibitive. This situation can be mitigated using the phase dependent peak_buffer_based_on:

[str | hkl_Is | xo_Is | d_Is]
[peak_buffer_based_on !E [peak_buffer_based_on_tol !E]]...

When peak_buffer_based_on is defined, the usual means of determining the size of the peak
buffer is over-ruled. Instead peaks are grouped according to the peak_buffer_based_on criterion.
For example, to insert a peak into the peak buffer at x-axis intervals of 1 then the following can be
used:

peak_buffer_based_on = Xo; peak_buffer_based_on_tol 1

Thus, peaks with similar Xo’s, as defined by peak_buffer_based_on_tol, are grouped. Occasionally
peaks that are a function of hkls have groups of hkls that are of the same peak shape and at a
similar x-axis position. The following demonstrates how to group these peaks such that a single
peak shape is calculated.

Peak Generation and "peak_type" 50

50 Peak Generation and "peak_type"

peak_buffer_based_on = Xo; peak_buffer_based_on_tol 0.01
peak_buffer_based_on = sh; peak_buffer_based_on_tol 1e-7

where sh can be a spherical harmonics parameter or an equation describing hkl dependence or a
march_dollase parameter. When more than one peak_buffer_based_on is defined then peak
groups obey all of the peak_buffer_based_on‘s. peak_buffer_based_on disables the peak stretch-
ing procedures and any defined aberration_range_change_allowed. peak_buffer_based_on can be
a function of the reserved parameters H, K, L, M, D_spacing, X, Xo, Th.

Depending on the problem, smaller values such as 1e-7 can significantly reduce the number of
peaks stored in the peaks buffer (a factor of 15 at times) without significantly affecting Rwp. A
negative value for peak_buffer_based_on_tol will force a calculation for each peak resulting in
independent hkl peak shapes, for example:

peak_buffer_based_on 1 peak_buffer_based_on_tol -1

5.6 An Accurate Voigt

[more_accurate_Voigt] can be used to override the default Pseudo-Voigt approximation to the
Voigt. It decreases the error (Voigt_approx – Voigt_true) by a factor of ~100. Defining G as the
FWHM of a Gaussian and L as the FWHM of a Lorentzian; the screen shots below show fits to a
range of G convoluted with L, resulting in Voigts, with L varying from 0.01 to 0.09 and G+L=1. Fit-
ting to the Voigts using pseudo-Voigts we get

Fitting to the Voigts using the accurate calibration results in the small difference plots seen in
the following:

Peak Generation and "peak_type" 51

51 Peak Generation and "peak_type"

Rescaling the plot vertically to show the whole scan gives

Note that the difference plot simply appears as a straight line. The more_accurate_Voigt calibra-
tion is accurate and fast. It fits to each true Voigt the following:

fit_obj = a1 (2 Sqrt(Ln(2) / Pi) / f1) Exp(-4 Ln(2)(X / f1)^2);
fit_obj = a2 (2 Sqrt(Ln(2) / Pi) / f2) Exp(-4 Ln(2)(X / f2)^2);
fit_obj = a3 (2 / (Pi f3)) / (1 + 4 (X / f3)^2);
fit_obj = a4 (4 / (Pi f4)) / (1 + 4 (X / f4)^2)^2;

One thousand sets of a0, a1, a2, a3, f0, f1, f2, f3 parameters were determined by fitting to 1000
true Voigts with L varying from 0 to 1 in steps of 0.001.

numerical_lor_gauss_conv creates a ‘true’ Voigt by numerically convoluting Gaussians with Lo-
rentzians; the extents to which these aberrations are calculated can be defined using numeri-
cal_lor_ymin_on_ymax (default of 0.0001). The CREATE.INP file in the TEST_EXAMPLES\VOIGT-AP-
PROX directory uses numerical_lor_gauss_conv where the amount of Lorentzian is entered as a
number out of a 1000. A value of 500 would yield a Voigt with a Lorentzian FWHM of 0.5 and a
Gaussian FWHM of 0.5. The generated true Voigt is calculated by numerically convoluting a
lor_fwhm with a gauss_fwhm. The generated true Voigt is saved to a file with the name
VOIGTNNNN.XY, where NNNN corresponds to a number between 0 and 1000. The file generated
contains 100,000 data points. The step size used in the convolutions is as small as 0.0005 when
using a convolution_step of 4.

TOPAS uses an FFT to perform the double summation of the convolution. However, for lor > 500,
the convolution itself comprises an analytical Lorentzian with a Gaussian comprising straight line
segments. For lor < 500 then an analytical Gaussian is convoluted with a Lorentzian comprising
straight line segments.

• The file FIT-PV.INP fits a pseudo-Voigt to the generated true Voigt.

• The file FIT-MORE.INP fits to the generated true Voigt using equivalent fit_obj’s.

• The file FIT-OBJ.INP fits fit_obj's to the generated true Voigt.

The difference plot from FIT-PV.INP is in the order of 500 to 1000 times larger than the difference
plot from FIT-MORE.INP.

Fast simultaneous refinement of 1000s of patterns 52

52 Fast simultaneous refinement of 1000s of patterns

6. .. FAST SIMULTANEOUS REFINEMENT OF 1000S OF PATTERNS

[str...]
[peak_buffer_similar_tag !E]
[hkl_similar_tag !E]

Example

TEST_EXAMPLES\1000S-OF-PATERNS\FIT.INP

Previous version of TOPAS applied threading at the phase level; Version 7 extends threading to
the xdd level. Computers with many processors now show large improvements in speed when
many diffraction patterns are refined simultaneously. Refining on 1000s of patterns with many
threads is also memory intensive. To reduce memory usage, TOPAS looks for items that are
unique and stores only one. For example, operating on an INP file with 1000s of data files and
1000s of phases, the program:

• Calculates and stores only unique structures.
• Calculates and stores only unique sets of hkls amongst the unique structures.
• Calculates and stores only unique bkg derivatives.
• Calculates and stores only unique peak positions and d-spacing amongst unique sets of hkls

and lattice parameters.
• Calculates and stores only unique scale_pks equations.
• Calculates and stores only unique th2_offset equations.
• Calculates and stores only unique pk_xo equations.
• Calculates and stores only unique x-axis data (ie. xdd data files with the same x-axis).

For example, if 10000 data files were loaded each with 10000 identical sets of hkls, then only one
set of hkls are stored saving approximately 1.6 Gbytes of memory. Operating on items that are
unique also reduces calculations, for example, scale_pks equations that have identical (or similar)
hkls are only calculated once; and similarly, for th2_offset, pk_xo, internal peak positions and in-
ternal d-spacings.

For phases with similar sets of hkls, then peaks-buffers can be calculated once using the
peak_buffer_similar_tag. For example, only three peaks-buffers are calculated and stored in the
following even through 8 phases are defined:

xdd …
str … peak_buffer_similar_tag 1
str … peak_buffer_similar_tag 2
str … peak_buffer_similar_tag 3
str … peak_buffer_similar_tag 1

xdd …
str … peak_buffer_similar_tag 3
str … peak_buffer_similar_tag 1
str … peak_buffer_similar_tag 2
str … peak_buffer_similar_tag 3

An exception is also thrown if peaks-buffers with similar peak_buffer_similar_tag are not actually
similar; for example, the following will throw an exception as the CS_L parameters are different
(ie. two independent parameters a1 and a2).

Fast simultaneous refinement of 1000s of patterns 53

53 Fast simultaneous refinement of 1000s of patterns

xdd …
str … peak_buffer_similar_tag 1 CS_L(a1, 100)

xdd …
str … peak_buffer_similar_tag 1 CS_L(a2, 100)

In some cases, sets of hkls are similar but not identical due to slightly different lattice parame-
ters. In such cases hkl_similar_tag can be used to force the use of a single set of hkls resulting in
reduced memory usage and improved speed. In general:

• Phases with the same peaks-buffer can have different fit_obj(s), bkg(s), th2_offset(s),
scale_phase_X(s), scale_pks(s) or pk_xo(s).

• Phase with the same structural parameters (same sites) can have different fit_obj(s), bkg(s),
th2_offset(s), scale_phase_X(s), scale_pks(s), pk_xo(s) and lattice parameters.

6.1 Example refinement of 1000s of patterns

First, it may be best to set the number of threads in the file MAXNUMTHREADS.TXT to the number
of physical CPU cores in your computer. FIT.INP creates a test pattern with 4001 data points when
“#define CREATE__” is used. When “#define CREATE__” is commented out then refinement pro-
ceeds on many patterns, the number of which is stipulated by the Num_Files_2 macro. Each pat-
tern has:

• three structures with the number of hkls generated being 15, 33 and 52

• five unique bkg parameters

• four unique lattice parameters

• three unique scale parameters

• one unique zero error parameter

• one unique specimen displacement parameter

• one unique LP_Factor parameter

Global to all patterns are three CS_L and
three CS_G parameters. This results in
12009 independent parameters for 1000
patterns, or 60009 independent parame-
ters for 5000 patterns. The A matrix is
sparse as seen in the (right) for 10 patterns.

Fast simultaneous refinement of 1000s of patterns 54

54 Fast simultaneous refinement of 1000s of patterns

The following plots the time taken to perform 30 iterations as a function of Number-of-patterns
for Version 6 and Version 7 with the use of peak_buffer_similar_tag; and additionally, for Version
7 without the use of peak_buffer_similar_tag.

Seen is the very large reduction in refinement times when peak_buffer_similar_tag is used. Ver-
sion 6 is considerably slower due to threading at the str level rather than the xdd level; Version 7
with peak_buffer_similar_tag is in fact well-over 120 times faster than Version 6. For Version 7
only, the following shows that the speed gain of Time with peak_buffer_similar_tag divided by
Time without peak_buffer_similar_tag increases with Number-of-patterns.

The following shows the reduction in memory usage for Version 7 compared to Version 6.

The above refinements for FIT.INP had three unique structures across all patterns. If the beq pa-
rameters of the three structures were refined independently then there would be 3*Number-of-

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sp
ee

d
 g

ai
n

Number of patterns

Speed gain for FIT.INP, 8 Threads
peak_buffer_similar_tag used

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
(s

)

Number of patterns

Time for FIT.INP, 8 Threads
peak_buffer_similar_tag used

Version 7

Version 6

Version 7, No tag

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
em

o
ry

 u
se

d
 (

M
b

yt
es

)

Number of patterns

Memory usage for FIT.INP, 8 Threads
peak_buffer_similar_tag used

Version 7

Version 6

Fast simultaneous refinement of 1000s of patterns 55

55 Fast simultaneous refinement of 1000s of patterns

patterns structures and the times for Version 7 with peak_buffer_similar_tag increase by approx-
imately 50%. This increase is modest considering the increase in Numbed-of-parameters as well
as the increase in structure factor calculations.

Amazon EC2 cloud computing 56

56 Amazon EC2 cloud computing

7. .. AMAZON EC2 CLOUD COMPUTING

A cloud version of TOPAS can be run on multiple virtual computers on the Amazon Web Services
(AWS) cloud platform. The process is seamlessly driven from the GUI version of TOPAS/TOPAS-
Academic where launching an INP file on the cloud is a few mouse-clicks away. This gives users
access to large computing resources where 1000s of virtual machines (VMs) can be utilized in a
relatively inexpensive manner. Large simulated annealing problems taking weeks on a laptop can
now be done in minutes. The process typically involves working interactively with TOPAS in
Launch mode and performing initial preliminary refinements. Once the user is satisfied, the cloud
version of the kernel, which we will call TC-Cloud, can be launched. Cloud operation is often per-
formed in an interactive manner due to the speed of analysis; many Cloud runs need only last for
10 to 20 minutes depending on the number of VMs used.

The user does not install TC-Cloud; instead TC-Cloud is pre-installed on a Virtual Machine image
called an Amazon Machine Image (AMI). The AMI for TC-Cloud is called TC-AMI. TC-AMI can be
used to create many virtual machines each corresponding to a virtual Linux computer; we will call
these TC-VMs. Each TC-VM can run multiple instances of TC-Cloud. To summarize:

• TA.EXE is the GUI version of TOPAS running on a local computer.

• TC-Cloud is the cloud version of TOPAS running on a VM.

• TC-AMI is an image of a VM with TC-Cloud installed.

• TC-VM is a VM created from TC-AMI.

• Many TC-VMs (500 for example) can be created/deleted at once.

The user is given a choice of VM type when launching TC-AMI to create TC-VMs. A large TC-VM
can run more than one instance of TC-Cloud.

7.1 Operation

TC-Cloud operates in a similar but not identical manner to TC.EXE. Importantly INP files are pre-
processed before launching on the cloud; this ensures the use of local files such as TOPAS.INC
and other #include files. Since the local TOPAS.INC is used then local emission profiles are used.
Data files referenced in the INP file must reside in the same local directory as the INP file. This is
normal practise and INP files should therefore not contain file paths. For example,

• this is valid on the cloud: xdd data.xy

• this is not valid on the cloud: xdd data\data.xy

File names on Linux are case sensitive. It is therefore important to use the correct case when
referring to file names within INP files. The following keywords can be included in INP files but
have been disabled:

append_bond_lengths
atom_out
A_matrix
A_matrix_normalized
bootstrap_errors
C_matrix

do_errors_include_penalties
do_errors_include_restraints
index
num_runs
out
out_file

out_prm_vals_per_iteration
phase_out
phase_out_X
process_times
system_after_save_OUT
system_before_save_OUT

Amazon EC2 cloud computing 57

57 Amazon EC2 cloud computing

C_matrix_normalized
do_errors

out_prm_vals_dependents_filter
out_prm_vals_filter
out_prm_vals_on_convergence

verbose
view_structure
xdd_out

Many of these output data and as such are better left to the local computer.

7.2 Pre-requisites

Signing up with Amazon AWS is required, see https://aws.amazon.com/. Also, necessary is
TOPAS/TOPAS-Academic and a local computer to run TOPAS. TC-AMI comes with TOPAS/Aca-
demic Version 7; access to TC-AMI can be obtained from Alan Coelho. TC-VMs are monitored and
terminated depending on user defined conditions. For example, VMs can be terminated when the
best goodness of fit parameter (GOF) from all TC-VMs drop below a user defined value. This re-
duces running times for the TC-VMs and consequently running costs. The following points are
important:

• Signing up with AWS does not incur a fee.

• Using non-free AWS resources do incur AWS fees.

• The user is responsible for all AWS costs.

• AWS fees can be reduced by reducing the use of AWS services.

• VMs created as spot instances are often 60 to 70% cheaper.

• Services can be reduced by:

• Turning off unused VMs.

• Deleting unused VMs.

7.3 Pricing of AWS cloud resources

The following approximate pricing information are dependent on AWS and could change. Running
TOPAS on AWS requires the use of VMs. Each VM in turn uses an EBS volume (a storage device).
Use of both the VM and the EBS incur AWS fees, see:

For VMs: https://aws.amazon.com/ec2/pricing/on-demand/

For EBS volumes: https://aws.amazon.com/ebs/pricing/

Limited usage of a single core VM on Amazon AWS are free of charge for a period of one year.
Large VMs (ones with many cores) are not free and charges are dependent on time usage. Pricing
is on a per second basis for Linux VMs; the twin core VM c5.large is recommended for routine TC-
Cloud usage; for the same core count, it is equivalent to an average high end laptop in computa-
tional speed and is priced at approximately ~0.034 cents USD (for spot instances) per hour. One
hundred of these running for one hour will cost approximately $3.40 USD. Large saving, often up
to 70%, can be realized by requesting spot-instances, see https://aws.ama-
zon.com/ec2/spot/pricing/. The author has had no trouble getting regular access to 500 spot
instances.

Each TV-VM is a Linux VM; it comes with an 8 Gbyte EBS volume which stores TC-Cloud and the
operating system. EBS volumes are relatively inexpensive at 0.125 USD per Gbyte per month, or

https://aws.amazon.com/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/

Amazon EC2 cloud computing 58

58 Amazon EC2 cloud computing

$1 USD per month for each TC-VM. For one hundred VMs this small charge becomes $100 USD per
month. It is therefore recommended that VMs are deleted after use to reduce costs. Creating and
starting VMs takes one to two minutes.

Cloud storage is required in addition to VMs and associated EBS volumes. This storage is used to
transfer data from the local computer to the VMs and visa-versa. AWS S3 cloud storage is used;
its inexpensive at approximately $0.02 per Gbyte per month, see https://aws.ama-
zon.com/s3/pricing/. File manipulation of S3 storage is provided. Running TC-Cloud typically re-
quires a fraction of a Gbyte in S3 storage and hence common storage costs are negligible.

7.4 AWS dashboard and operating TC-Cloud

AWS includes a comprehensive browser dashboard called EC2 Dashboard https://ap-southeast-
2.console.aws.amazon.com/ec2/. In the case of running TC-Cloud, the dashboard is primarily
used to create TC-VMs from TC-AMI as well as deleting files created on the S3 cloud storage. The
rest of TC-Cloud operations are performed from TA.EXE. The important parts of EC2 Dashboard
are circled in the following:

Note: AWS web screens may change due to improvements etc…; the general operation however
should remain the same. Clicking on the Account (circled on the top) brings up account options
which includes real time billing information (AWS cloud costs). Also, on the top is the AWS region
being operated on. AWS operates on a regional basis; regions chosen should be in close geo-
graphical proximity to the local computer. This reduces response times and data transfer costs.
TC-VMs are created by clicking on AMIs. Once created, details of TC-VMs for the selected region
can be viewed by clicking on Instances. AWS limits the number of VMs available to 20 on most VM
types; request for increasing this number can be made from the circled ‘Limits’ item. The author
had no trouble getting regular access to 500 spot instance VMs.

7.5 Installing AWS CLI on the local computer

For communicating with the TC- VMs; the local computer requires the installation of AWS Com-
mand Line Interface (CLI). The CLI can be trivially installed and downloaded from:

https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html.

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://ap-southeast-2.console.aws.amazon.com/ec2/
https://ap-southeast-2.console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html

Amazon EC2 cloud computing 59

59 Amazon EC2 cloud computing

7.6 Operating TC-Cloud from TOPAS (GUI)

After the preliminary setting up and testing of an INP file with TA.EXE on the local computer, the
INP file can be fed to AWS for parallel operation on many VMs. Summing up the process we have:

1) Set up INP file and ensure it runs as expected on TA.EXE on the local computer.

2) Create a small number of VMs (3 for example) and ensure that the INP file runs as expected on
the VMs.

3) Create many more VMs (user determined) and run the INP file on the VMs.

Stage-1 is normal TOPAS operation. Stage-2 involves creating a job (*.CLD files) from the ‘Setup
Cloud’ tab in the GUI. Before creating a job its best to create a template that can be used for all
jobs in the AWS region. Enter your ‘Key pair file’, the AWS Region being used and your S3 bucket
name details in the Setup Cloud tab; it should look something like:

Save the details using ‘Save-As CLD setup file’ to a file. Load this file when creating other CLD
files. To run a job then enter the rest of the setup details; an example is:

Amazon EC2 cloud computing 60

60 Amazon EC2 cloud computing

The highlighted lines require input to create a job. This input comprises the INP file to be run on
the Cloud as well as the necessary data files. In the above example the INP file is placed in the S3
job directory called 2wfi-1 and the data file is placed in the S3 directory called 2wfi. S3 will there-
fore contain the following two directories:

s3://aacbucket1/swfi-1

s3://aacbucket1/swfi

The INP file as well as other communication files are copied to the job directory, 2wfi-1 in this
case. The name of the INP file on S3 is changed to in.inp; in.inp is used in the retrieval of out from
the VMs; it is unchanged during Cloud operation and it can be also viewed as a backup for the job.
Each run on the Cloud requires a unique job name; an exception is thrown otherwise. Many jobs
however, can use the same S3 data directory. In cases where many jobs are run sequentially, each
using the same data files, then the ‘Copy data to S3’ option can be set to No after the first job; this
speeds up processing as copying large data files over the internet can be slow. CLD files contain
information necessary for launching the INP file on the cloud. Once the information is entered, it
becomes possible to view the created VMs in the ‘Virtual Machines’ tab, or:

Amazon EC2 cloud computing 61

61 Amazon EC2 cloud computing

Data can be displayed in sorted order by double clicking on column headings. To launch the INP
file on a VM then select the VM and click ‘Run TC on selected VMs’. To select all VMs then click on
the empty rectangle circled. Only VMs with an ok Status can be launched. If a selected VM is start-
ing or pending then Status will not be ok. The number of TCs running on each VM (typically one) is
shown in the # TCs column. This data as well as other VM details maybe out-of-date; to show the
latest then click on the Refresh option. The iters column shows the total number of refinement
iterations executed on the respective VM; this number supplies a means of determining if a VM is
running in an expected manner. For example, if iters has stopped increasing in an expected man-
ner and #TCs is not zero then the running TCs have stopped operating in an expected manner.

Due to the speed of analysis, Cloud operation is often performed interactively. Running many jobs
to investigate a problem, each taking 10 to 20 minutes and comprising 500 VMs, is common. Each
job creates a directory on S3 which can be deleted after use using the AWS S3 dash-board; it
looks like:

7.7 Terminating/Stopping TC-VMs and tc-mon.a

Terminating or stopping TC-VMs reduces AWS fees. TC-VMs can be automatically stopped or ter-
minated depending on ’End conditions’, or:

These conditions are uploaded to the VMs when a job is launched. On launching a job, a small mon-
itoring program, called tc-mon.a, is started on each VM. This monitoring program reads the End
conditions and monitors the running TCs. VMs are in turn terminated/stopped depending on the
End conditions. From the local machine, the end conditions can also be uploaded after a job has

Amazon EC2 cloud computing 62

62 Amazon EC2 cloud computing

started using the ‘Upload to selected VMs’ option. This option has no effect on VMs with a Status
that is not ok. The ‘Refresh’ option displays values as found on common storage for the job indi-
cated in ‘Setup cloud’ tab.

TCs running on VMs are terminated when the number or iters, as defined in the INP file, has been
reached, or, when the CPU time allocated ‘Max time (s)‘ has been reached or when the overall best
GOF falls below ’GOF Target’. When there are no TCs running on a VM then the VM is stopped if ‘Off
on End’=1; subsequently if ‘Del on end’=1 then the VM itself is terminated (deleted). Parameters for
a typical job left unattended would be:

Max time (s) = 10 60 60 = 10 hrs of running

GOF Target = 10, Off_on_End = 1, Del_on_end = 1

For interactive use, the user can manually terminate TCs and VMs; the termination parameters
could therefore look something like:

Max time (s) = 0

GOF_Target = 10, Off_on_End = 0, Del_on_end = 0

A ‘Max time (s)’ of zero (the default) disables the ending of TCs on a time basis. ‘Max time (s)’ on
VMs can be entered as an equation by starting the equation with an equal sign. For example,
‘= 24 60 60’ could be used to enter 24hrs.

7.8 Powering off TC-VMs after 100 minutes of inactivity

In addition to the terminating/stopping criteria of section 7.7, VMs are automatically powered off
(stopped but not terminated) after 100 minutes of TC-Cloud inactivity including inactivity on VM
start-up. The net effect is that VMs are stopped after 100 minutes of TC-cloud not being run. Sit-
uations where 100 minutes of inactivity is possible include internet-down situations as well as
users forgetting to power-off or terminate VMs. For example, the fee incurred for forgetting to
turn off 100 spot instance VMs would be ~3.40 USD. Typical usage comprises turning on 500 VMs
and running many jobs interactively to analyse data. The VMs are not turned off during the running
of these jobs.

7.9 Retrieving the INP or FC file that gave the best GOF

Output from a job, corresponding to the best INP for Rietveld refinement, or, the best structure
factors for charge-flipping, is stored on the S3 job directory. This storage to S3 from a job is in-
dependent of the local computer. The ‘Get best overall’ downloads the output to a local directory
from where INP file originated. The name given to the output is Job-Name.INP for Rietveld refine-
ment or Job-Name.FC for charge-flipping. For example, for a job named ‘PbSO4-1’ and an input
file with a path of C:\DATA\PBSO4.INP we get:

‘INP File for cloud’ = C:\DATA\PBSO4.INP

 ‘Get best overall’ places output in C:\DATA\PBSO4 -1.INP

Once retrieved, the best INP file can be run on the local computer; in other words, the best fit
from the cloud can be visually inspected with a few mouse clicks. If the VMs are available and not

Amazon EC2 cloud computing 63

63 Amazon EC2 cloud computing

stopped or terminated, then output from the individual VMs can be retrieved using the ‘Get best
for selected’ option; output is placed in the local computer in an identical to that described for
‘Get best overall’. Typical interactive operation therefore comprise viewing and partially running
intermediate cloud results and making decisions based on those results.

7.10 ... Monitoring, TC-Cloud is independent of the local computer

The running of VMs can be monitored by the local computer using the ‘Monitoring is On/Off’ option.
When On, the best overall GOF is displayed in the text output of the ‘Fit Dialog’ window at time
intervals as defined in ‘Monitoring time interval’ option of ‘Setup cloud’ tab. Whilst jobs are running,
the local computer can be used to run refinements independent of any running jobs. Jobs can be
started on a laptop, left running overnight and the results viewed the next day.

7.11 ... Random number generator automatically seeded

The random number generator for both TC-Cloud (and TC.EXE on the local computer) is seeded
such that the sequence of random numbers generated for any run is unique. Identical sequences
can be generated by using the seed keyword with an integer (corresponding to a seed number)
placed after it.

7.12 ... CLOUD__ #define and Get(cloud_run_number)

The pre-processor directive of ‘#define CLOUD__’ is automatically included at the start of INP
files running on VMs. This allows blocks of INP script to be conditionally included/excluded from
cloud runs making it easy to run the same INP file in both the cloud and on the local computer. For
example, the following is useful in the case of charge-flipping:

charge_flipping
#ifdef CLOUD__

randomize_initial_phases_by = Rand(-180, 180);
#else

set_initial_phases_to job-name.fc
#endif

Here the state of the best FC file found on the VMs can be determined by first executing the ‘Get
best overall’ option and then locally running the INP file. Also, available is Get(cloud_run_number)
which returns the run number assigned to the corresponding VM with counting starting at 0.
Get(cloud_run_number) returns -1 when running on the local computer. Example usage in terms
of stacking faults could be:

macro & pa { Get(cloud_run_number+1)/102 }
generate_stack_sequences {

number_of_sequences 200
number_of_stacks_per_sequence 200
Transition(1, lpc)

to 1 = pa; a_add = 2/3; b_add = 1/3;
to 2 = 1-pa; a_add = 0; b_add = 0;

Transition(2, lpc)
to 1 = 1-pa; a_add = 0; b_add = 0;
to 2 = pa; a_add = -2/3; b_add = -1/3;

Amazon EC2 cloud computing 64

64 Amazon EC2 cloud computing

}

7.13 ... ‘Setup Cloud’ details

Cloud setup file

Name of file containing cloud details for a job.

Key pair file

Name of file containing encrypted login information, see:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

This file needs to be read/write protected so that only one user can access; use Windows
Explorer and Right-Click on the file to change its properties.

Region

Geographical region where VMs reside.

S3 Bucket

The name of the bucket for transferring data to and from the TC-VMs. Buckets are created
and manipulated at https://s3.console.aws.amazon.com/s3/. By default, s3 buckets are pri-
vate to the user. Once a bucket is created, directories within the bucket corresponding to the
job name are automatically created on launching the TC-VMs. For example, for a job named
job-1 and a bucket called my-bucket then the following directory on s3 is created:

s3://my-bucket/job-1

my-bucket are used for many jobs. Information stored on common storage are not deleted by
TA.EXE running on the local computer; the user is therefore responsible for cleaning up un-
wanted files using the AWS S3 dash-board.

Job Name

Name of job. Job names cannot contain spaces.

S3 data directory

S3 directory where data files are stored for a job. More than one job can use a S3 data direc-
tory.

INP file for cloud

Input file to run on the cloud. The INP file can make use of the predefined pre-processor di-
rective called CLOUD__. It can also make use of Get(cloud_run_number).

Number TCs per VM

Typically set to 1. The number of TC-Cloud instances to run on each TC-VM. The number of
TCs per VM should not exceed the number of Cores as seen in Cores column of the Virtual

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://s3.console.aws.amazon.com/s3/

Amazon EC2 cloud computing 65

65 Amazon EC2 cloud computing

Machines tab. For example, the VM type of c5.18xlarge has 36 Cores each with 2 threads (intel
hyper threading). The number of TCs therefore should not exceed 36. Information on EC2 in-
stance types can be found at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/in-
stance-optimize-cpu.html.

Max threads per TC

Typically set to 2 for c5.large VMs. The maximum number threads each TC can use. If zero,
then each VM will be allowed to use the maximum number or threads. For VMs with more than
one TC running then the maximum number threads should be set to:

Max_threads_per_TC = (Virtual Cores) / Number_TCs_per_VM

Monitoring time interval (s)

The time interval used when ‘Monitoring is On’.

7.14 ... ‘Virtual Machines’ tab options

Refresh

Refreshes VMs details corresponding to the region defined in the ‘Setup cloud’ tab.

Run TC on selected VMs

Launches TC-Cloud on selected VMs.

Get best overall

Gets and processes the best output from common storage for the job defined in Setup cloud
and places the result in the directory where the original INP file came from. For Rietveld re-
finement the retrieved output is placed in a file called job-name.INP. For charge-clipping, the
retrieved output (structure factors) is placed in a file called job-name.FC. Files placed in com-
mon storage persists and are therefore available even after the job’s VMs are deleted.

Get best for selected

Gets and processes the best output from a selected VM and places the result in the directory
of the original INP file. The selected VM must be On. For Rietveld refinement the retrieved
output is placed in a file called job-name.INP. For charge-clipping, the retrieved output (struc-
ture factors) is placed in a file called job-name.FC.

End TC on selected VMs

Stops any TC-Clouds running on selected VMs. On termination of the TCs, the VMs are turned
off if their corresponding Off_on_End=1; in turn VMs are terminated if their corresponding
Del_on_End=1.

Monitoring is On/Off

Starts/Stops monitoring. When monitoring is On, the best GOF as found by the TC-VMs for the
job defined in ‘Setup cloud’ is displayed in the Fit Dialog.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

Amazon EC2 cloud computing 66

66 Amazon EC2 cloud computing

Turn On selected VMs

Turns selected VMs On.

Turn Off selected VMs

Turns selected VMs Off.

Console for selected VMs

Log-in to the selected VMs creating terminal windows for each. Can be useful for trouble
shooting.

7.15 ... Creating TC-VMs – Spot Instances

TC-VMs are created from the EC2 dashboard. To create 200 VMs, for example, click on the AMIs
option and then click on the TC-AMI-n AMI. n corresponds to the latest TC-AMI version. Then click
on Launch to bring up ‘Choose an Instance Type’ screen. Choose an appropriate VM type; for re-
finements that require less than 4Gbytes of memory then choose c5.large. The amount of
memory required for each TC can be determined by first running the INP file on the local machine
and viewing the Windows Task Manager. Once the VM type is chosen, proceed to the next screen
‘Configure Instance Details’:

Set ‘Number of instances’ to 200 and set the ‘IAM role’ to ‘ecsInstanceRole’. Select ‘Request Spot
instances’. Spot instances are often 60 to 70% cheaper; the user is informed when spot instances

Amazon EC2 cloud computing 67

67 Amazon EC2 cloud computing

are unavailable; the author has had no difficulty obtaining 500 spot instances on a regular basis.
Proceed to the ‘Configure Security Group’ screen’ and set the Source to ‘My IP’; ie.

Click on ‘Review and Launch’ to Launch the creation of the TC-VMs. Creation should take one to
two minutes. Use the TA Refresh option of ‘Virtual Machines’ to see the status of VMs; VMs with a
Status of ok are ready to run. Once all the VMs are created, the ‘Run TCs on selected VMs’ option
from the Virtual Machines tab can be used to launch the job on the selected VMs.

7.16 ... Choosing the optimum VM type

The most appropriate VM for TOPAS type problems are c5.large where memory usage is less than
4 Gbytes. However, a problem that uses 20 Gbytes of memory would need a larger VM. The prob-
lem could be a large charge flipping problem or indeed a large Rietveld refinement simulated an-
nealing problem with 1000s of parameters. Memory usage prior to launching on the Cloud can be
determined using the local computer. The VM type chosen should therefore be one than has more
memory and the maximum memory usage seen on the local computer. Only c* types (compute
types) VMs should be chosen (see https://aws.amazon.com/ec2/pricing/on-demand/). For a
problem that use 20 Gbytes of memory, the c5.4xlarge is the smallest VM that will do the job. Max
Number of threads should be set to zero allowing the maximum number of threads to be used
which in this case is probably 16.

Note, TOPAS is threaded to a large extent, however, an excessive number of threads could slow
down operation. For example, the large VM type of c5.18xlarge operating on the TEST_EXAM-
PLE\SINGLE-CRYSTAL\PN_O2_2-ADPS.INP (3970 parameters) produces the following as a func-
tion of number of threads:

https://aws.amazon.com/ec2/pricing/on-demand/

Amazon EC2 cloud computing 68

68 Amazon EC2 cloud computing

of
Threads

approximate_A - 15 iterations Full A matrix - one iteration
Time(s) Gain Time(s) Gain

2 42.19 0.32
4 22.28 0.60 186.98 0.36

8 8.41 1.59 61.93 1.09

16 4.11 3.25 31.65 2.12

32 2.77 4.82 17.92 3.75

48 2.89 4.62 15.18 4.43

64 2.95 4.53 13.71 4.91

70 3.06 4.37 13.73 4.90

The columns marked Gain are the times taken on a high-end laptop with 8 threads divided by the
time taken on c5.18xlarge. The speedup due to number-of-threads is substantial up to about 32
threads. It is worth noting that TOPAS V7 for the approximate_A case is 1.9 times faster than V6.

7.17 ... Unable to connect to TC-VMs after local computer restart

The IP address of the local computer may change when the local computer is powered off and
restarted, or, when the connection to the internet changes. VMs created prior to the restart
would therefore have an invalid local-computer-IP-address; communication with the VMs would
therefore not be possible. This scenario is noticed when the Refresh or ‘Run TCs on selected VMs’
options of the ‘Virtual Machines’ tab is not responsive. In such a case it is necessary to instruct
the VMs that the IP address has changed. This can be performed from the Instances of the EC2
Dashboard; from this screen click on the security group shown in the ‘Security Groups’ column.
This brings up details of the security group. Click on Inbound and then Edit and then change the
Source to My IP, or,

Protein Refinement 69

69 Protein Refinement

8. .. PROTEIN REFINEMENT

8.1 Reading Protein Data Bank (PDB) CIF files

[pdb_cif_to_str_file $file] ...
[pdb_ignode_adps !E0]
[pdb_cif_sites $sites]
[pdb_cif_to_str #0]

Examples

CF-PROTEIN\2PVB-P212121\GEN.INP
CF-PROTEIN\2PVB-P212121\MATCH.INP
CF-PROTEIN\6Y84-C121\REFINEMENT.INP

Protein Data Bank (PDB) PDBx/mmCIF fles from https://www.rcsb.org/ can be downloaded and
converted to INP format using pdb_cif_to_str_file. The operation is performed when
pdb_cif_to_str is 1; on termination of refinement pdb_cif_to_str is set to 0 in the OUT file. The INP
text generated is placed in the INP file after the pdb_cif_to_str keyword, or:

pdb_cif_to_str_file cif.cif
pdb_ignode_adps 1
pdb_cif_to_str 0

xdd_scr sf.cif
lam lo 0.9096
str

scale @ 1
a 51.03
b 49.81
c 34.57
space_group P212121
site ACE_C_0_1_HETATM x 0.07354 y 0.35529 z 0.47637 occ C 1.00 beq 6.24
site ACE_O_0_2_HETATM x 0.06210 y 0.34246 z 0.50194 occ O 1.00 beq 7.96
site ACE_CH3_0_3_HETATM x 0.06198 y 0.35666 z 0.43651 occ C 1.00 beq 8.20
site SER_N_1_4_ATOM x 0.09557 y 0.36858 z 0.48319 occ N 1.00 beq 6.66
site SER_CA_1_5_ATOM x 0.10676 y 0.36880 z 0.52155 occ C 0.46 beq 8.09
...
rigid

point_for_site SER_N_1_4_ATOM ux -1.40900 uy 0.28011 uz -1.21189
point_for_site SER_CA_1_5_ATOM ux -0.83800 uy 0.29111 uz 0.11411
point_for_site SER_CA_1_6_ATOM ux -0.70700 uy 0.20011 uz 0.04411
...
Rotate_about_axies(@ 0 RX_, @ 0 RY_, @ 0 RZ_)
translate tx @ 6.28600 ty @ 18.07889 tz @ 17.91589

A rigid body is generated for each residue with coordinates set relative to its geometric center.
Refinement can proceed on the generated INP text by setting the file name of xdd_scr to the name
of the structure factor file 2PVB-SF.CIF, also downloaded from https://www.rcsb.org/. Running
2PVB\GEN.INP produces GEN.OUT; setting GEN.INP to GEN.OUT and running produces a fit.

pdb_cif_sites processes sites with names matching the site identifying string $sites. This can be
used, for example, to extract all residues of the same type. The translate keywords of the rigid
bodies can then be set to zero and the individual sites of the residues penalized such that sites of
the same name are brought together; example INP text to do this is as follows:

 macro Match(s)
 {
 atomic_interaction s = R^2;

https://www.rcsb.org/
https://www.rcsb.org/

Protein Refinement 70

70 Protein Refinement

 ai_sites_1 s*
 ai_sites_2 s*
 ai_closest_N 1
 ai_only_eq_0
 penalty = s;
 }
 Match(LYS_N_)
 Match(LYS_CA_)
 Match(LYS_C_)
 Match(LYS_O_)
 Match(LYS_CB_)
 Match(LYS_CG_)

…

Running example 2PVB\MATCH.INP produces the following showing overlay of LYS residues:

8.2 Protein Refinement, 6y84, SARS-CoV-2 main protease

The structure factors and PDBx/mmCIF files for 6y84 can be downloaded from the PDB. To gen-
erate an initial INP file then create an INP file with the following (see 6Y84-C121\REFINEMENT.INP):

pdb_cif_to_str_file cif.cif
 pdb_ignode_adps 1
 pdb_cif_to_str 0

After refinement, the INP file can be updated with the structure generated from the CIF file. Re-
fining on the updated INP file gives:

Protein Refinement 71

71 Protein Refinement

The refinement comprised 50348 unique reflections and 1826 parameters and the time to con-
vergences was 33s on a laptop with all graphics operational. Restrains/constrains can of course
be added.

Solving proteins at atomic resolution 72

72 Solving proteins at atomic resolution

9. .. SOLVING PROTEINS AT ATOMIC RESOLUTION

Include_Charge_Flipping
charge_flipping

[cf_plot_histo !E]
[cf_plot_fit !E]
[add_to_phases_of_non_weak_reflections !E] ...
[scale_flipped !E]
[cf_percent_ED_ge_H #]
[pick_atoms $atom]…

[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[with_symmetry !E]
[omit !E]
[insert !E]
[pick_fwhm !E1]
[omit_fwhm !E1]
[insert_fwhm !E1]

[insert_atoms {
[activate !E1]
[in_cartesian]
[insert_atom] …

[x !E] [y !E] [z !E] [occ !E]
}]…
[cf_set_phases !E {

#h #k #l #Re #im
}]
[prm N # val_on_continue !E] …

Macros in CHARGE_FLIPPING.INC

Examples

CF-PROTEIN\
1A7Y-P1\SOLVE.INP
2ERL-C2\SOLVE.INP
1BYZ-P1\SOLVE.INP
2KNT-P21\SOLVE.INP
1AHO-P212121\SOLVE.INP
4LZT-P1\SOLVE.INP
1MC2-C121\SOLVE.INP
1DY5-P21\SOLVE.INP
2WFI-P212121\SOLVE.INP

1HHZ-P3221\SOLVE.INP
1C75-P212121\SOLVE.INP
1B0Y-P212121\SOLVE.INP
1CTJ-R3R\SOLVE.INP
2PVB-P212121\SOLVEINP
1CKU-P212121\SOLVE.INP
1SWZ-P3221\SOLVE.INP
5DA6-R32\SOLVE.INP

1CTJ-R3R\1-ATOM.INP
2PVB-P212121\1-ATOM.INP
1C75-P212121\1-ATOM.INP
5DA6-R32\1-ATOM.INP
1CKU-P212121\1-ATOM.INP
2WFI-P212121\1-ATOM.INP

4LZT-P1\2-ATOMS.INP

The largest proteins ever solved ab initio at atomic resolution can be solved using modified charg-
ing flipping strategies. Difficult or large structures can be solved in minutes, rather than days us-
ing Amazon AWS Cloud computing. New/modified charge_flipping keywords are shown above. A
single strategy does not solve all structures; A strategy successful on one structure is not nec-
essarily successful on another. However, it will be shown that only two strategies can solve a
large range of the most difficult structures. New keywords allow for a variety of strategies.
scale_flipped scales flipped electron density (ED) charge; it is applied each charge-flipping itera-
tion. insert_atom inserts atoms in the ED when activate is non-zero. val_on_continue for prm(s)
are evaluated at the end of each charge-flipping iteration. cf_percent_ED_ge_H returns the per-
centage of ED pixels greater than 1 where the maximum of the ED is set to number of electrons in
the heaviest atom defined by f_atom_type. Values less than 1 often signal a Uranium atom situa-
tion where a single ED peak dominates. cf_percent_ED_ge_H is displayed during charge flipping
in the Fit Dialog.

When cf_set_phases is non-zero, the phases for the family of reflections (#h, #k, #l) are set to
the phase corresponding to #Re and #Im. cf_set_phases is useful when phases are known or for

Solving proteins at atomic resolution 73

73 Solving proteins at atomic resolution

setting origin defining phases; for triclinic structures, three origin defining phases are possible.
Additionally, intensities of the reflections are scaled by the value evaluated by cf_set_phases.

Table 9-1 show difficult benchmark structures, as listed by Elser et al. (2017) and Burla et al. (2011),
that have been solved ab initio; see corresponding SOLVE.INP files for details. It is best to do pre-
liminary investigations on the local computer (non-Cloud) to determine which strategy might
work best. Once a strategy is chosen, INP files can be fed to the Cloud for rapid structure solution.
Up to 500 spot instance Virtual Machines (VMs) are easily obtained on the Amazon AWS system in
Australia at a cost of ~0.035 USD cents per VM per hour, or, 3.40 USD per hour for 100 machines.
These prices are Amazon AWS dependent. Prices are shown prior to the creation of the VMs. The
times shown in Table 9-1 can be easily doubled when one considers the preliminary analysis taken
to arrive at the appropriate strategy. Typically, strategies are tried on the local computer before
migrating the problem to the Cloud. Also, the structure solution process is normally halted after
the first solution is found; for the investigative purposes, however, the structures in Table 9-1
were each solved at least 5 times. The two strategies mentioned in Table 9-1 are:

‘ S0 strategy
 fraction_reflections_weak 0.5 add_to_phases_of_weak_reflections 90
 fraction_density_to_flip 0.9 scale_flipped 0.6

S0 seems to work well for large structures with a relatively heavy atom. Non-triclinic structures
with symmetry seems to succumb to the S1 strategy, or:

‘ S1 strategy
fraction_reflections_weak 0.5 add_to_phases_of_weak_reflections = Rand(-180, 180);

 fraction_density_to_flip 0.97 scale_flipped 0.2
 pick_atoms *
 pick_fwhm 3
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 10);

with_symmetry 1
 insert 10 ‘ Increase if the most dominant atom does not change

symmetry_obey_0_to_1 0.25 find_origin 0
flip_regime_2 = Sine_Wave(50/4,-3,3,50); ‘ Used when there’s not enough perturbation

S1T extends the S1 strategy with the addition of the tangent formula, or, the inclusion of:

Tangent(0.5, 30)

Solving proteins at atomic resolution 74

74 Solving proteins at atomic resolution

Table 9-1. Ab initio structure solution strategies. Time indicates time to solution on average.
Each structure was solved at least 5 times. Num_VMs greater than 8 refers to the number of
VMs used on the Cloud; Num_VMs=9 corresponds to an 8 core local computer (a laptop) . Cost
corresponds to the average Cloud cost to a solution using the strategy indicated.

Solved

PDB code

Space

group

N/Z

Time

(min)

Num

VMs

Cost

USD

Strategy

yes 1a7y P1 270 0.1 8 - S0

yes 2erl C2 303 1 200 0.10 S1

yes 1byz P1 408 1 200 0.10 S0

yes 2knt P21 460 16 200 2.00 S1T

yes 1aho P212121 500 1 200 0.10 S1

No 1w7q P65 828 >240 200 >28 S0,S1

yes 4lzt P1 1183 3 8 - S1

yes 1mc2 C121 1254 2 200 0.20 S1

yes 1dy5 P21 1894 1 500 1.40 S1

yes 2wfi P212121 1920 18 500 5.10 S1

yes 1hhz P3221 354 7 200 1.00 S1

yes 1c75 P212121 1184 1 8 - S0

yes 1b0y P212121 837 1 8 - S0

yes 1ctj R3r 918 2 8 - S1

yes 2pvb P212121 1096 3 200 0.35 S1

yes 1cku P212121 1599 2 8 - S0

yes 1swz P3221 1254 50 200 5.80 S1

yes 5da6 R32 1390 5 500 1.40 S1

PDB code Reference

1a7y, 2erl, 1byz, 2knt, 1aho, 1w7q, 4lzt, 1mc2, 1dy5, 2wfi Elser & Lan (2017)

1hhz, 1c75, 1b0y, 1ctj, 2pvb, 1cku, 1swz Burla et al. (2011)

5da6 Mooers (2016)

PDB codes 1b0y, 1ctj, 1c75 and 1cku are easily solved (a few minutes) on a laptop using the S0
strategy. 2knt uses the tangent formula due to its relatively low-resolution data (1.2Å) as well as
its relatively small number of non-hydrogen atoms in the asymmetric unit. 1w7q is a light element
structure that was not solve ab initio after more than four hours. flip_regime_2 of S1 introduces
perturbation and it should be used for cases where there the ED seems quiet during the charge
flipping process; decreasing the absolute value of flip_regime_2 reduces perturbation. In the
case of 1cm2, flip_regime_2 was set to oscillate between -1 and 1. Larger values clearly shows too
much perturbation in the ED.

Solving proteins at atomic resolution 75

75 Solving proteins at atomic resolution

Graphically inspecting the ED or looking at the (%ED > H) output on the local can be used to deter-
mine if there’s too little or too much perturbation, during charge flipping. (%ED > H) should typi-
cally range from 1 to 5. For example, setting fraction_reflections_weak to 0.9 results in too much
perturbation. Or, using the Tangent formula macro on P1 structures, without the mitigation strat-
egy of Fix_Uranium_3, results in too little perturbation resulting in uranium atom solutions. The
value set for Fix_Uranium_3 should be just high enough to prevent Uranium atom solutions; a
value of 1 seem to work in most cases. The number used for insert of pick_atoms should be just
high enough to change the position of the highest intensity ED peak every 40 to 50 iterations as
defined by choose_randomly; note pick_atoms is executed when choose_randomly is greater than
zero. add_to_phases_of_weak_reflections=90 results in a shifting origin and it should not be used
with symmetry_obey_0_to_1 ; the latter prevents origin shifting. add_to_phases_of_weak_reflec-
tions should be set to Rand(-180,180) instead of 90 when using symmetry_obey_0_to_1. Further
structure solution tips are:

• Try the simple S0 strategy first for number of atoms less than about 300.

• If a heavy atom is present, then try S0.

• Inspect the ED graphically; if it does not show distinct atoms after a few iterations then
change strategy.

• Use S1 for large difficult structures.

• Try the tangent formula when the number of non-hydrogen atoms in the asymmetric is less
than ~500 atoms. The tangent formula reduces perturbation allowing lower resolution struc-
ture to be solved.

The range of convergence of structure factor phases can be investigated by loading optimum
structure factor phases values, using set_initial_phases_to, and then adding to the optimal
phases using randomize_initial_phases_by. High resolution data can have their optimal phases
changed by an amount of 0.96*Rand(-180,180) whilst still being able to solve the structure within
a few dozen charge flipping iterations. Most of the SOLVE.INP examples contain the following for
investigating this range of convergence:

 #if (0)
 set_initial_phases_to optimal.fc
 randomize_initial_phases_by = Rand(-180, 180) 0.9;
 #endif

9.1 Ab initio solution of triclinic 4lzt

PDB code 4lzt comprises 1183 non-hydrogen atoms in the unit cell and is considered difficult to
solve, see Elser et al., 2017. 4lzt contains 10 Sulphur atoms and these are considered moderately
heavy. If we were to insert ED peaks at positions corresponding to the highest two peaks of the
optimum electron density, then charge flipping finds a solution and within a few iterations;
4LST\2-ATOMS.INP demonstrates this where an ED starting with the two highest optimal peaks,
inserted using insert_atoms, produces and R-factor plot of:

Solving proteins at atomic resolution 76

76 Solving proteins at atomic resolution

In fact, any two of the five highest peaks produce similar R-factor plots. However, these optimal
ED peak positions are unknown. The strategy that works therefore involves picking an atom ran-
domly out of the 10 largest peaks in the electron density and setting the picked atom to a large
density. The INP file looks like:

 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 pick_atoms *
 pick_fwhm 5 omit_fwhm 1 insert_fwhm 1
 choose_randomly = If(Mod(Cycle_Iter, 40), 0, 10);
 insert 10
 Fix_Uranium_3(1)
ATP(1000, 1) ‘ Totally randomize phases after 1000 iterations

pick_atoms picks atoms with a FWHM of 5 Å, as defined by pick_fwhm; this relatively large value
ensures that the picked atoms are approximately 5 Å apart. Once picked, pick_atoms removes
the atoms with a FWHM as defined by omit_fwhm, and then inserts atoms with a FWHM of in-
sert_fwhm. A solution of 4lzt takes a minute or two on a laptop computer and a typical R-factor
plot looks like:

9.2 Solution of non-triclinic lattices using a known atomic position

Large non-triclinic structures with many origins are difficult to solve. However, because of sym-
metry, non-triclinic structures can often be solved when the position of a single atom is known
within the ED. Atoms can be inserted in the ED using insert_atoms; for PDB code 2wfi we have:

Iteration

302520151050

R
-f

a
ct

o
r

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\4lzt-P1\2-atoms.inp

Iteration

9008007006005004003002001000

R
-f

a
ct

o
r

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\4lzt-P1\solve.inp

Solving proteins at atomic resolution 77

77 Solving proteins at atomic resolution

charge_flipping
 cf_hkl_file sf.cif ‘ Structure fact file from PDB
 space_group P212121
 a 37.544 b 65.144 c 69.680
 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 symmetry_obey_0_to_1 0.25 find_origin 0
 macro Occ_0 { 100 }
 insert_atoms {
 activate = Mod(Cycle_Iter, 100) == 0;
 load insert_atom x y z occ {
 0.72697 0.77709 0.11312 100 ‘ Position of known atom
 }
 }

The x, y, z coordinates of insert_atom can be in Cartesian coordinates using the in_cartesian key-
word at the insert_atoms level. The use of symmetry_obey_0_to_1 often assists in solution deter-
mination for non-triclinic structures. 2WFI can be solved ab initio, however it can be easily solved
if the position of one atom was known as seen by tunning 2WFI-P212121\1-ATOM.INP; it gives and
R-factor plot that looks like:

The OpenGL plot shows the solution as follows:

Iteration

35302520151050

R
-f

a
ct

o
r

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\2wfi-P212121\1-atom.inp

Solving proteins at atomic resolution 78

78 Solving proteins at atomic resolution

Using any one of the first six highest optimal ED peaks results in a solution. Many structures can
be solved from knowing the position of just one atom. 1-ATOM.INP files, similar-to the 2wfi case,
are given for 1ctj, 2pvb, 1c75, 5da6, 1cku, 2wfi.

9.3 Ab initio solution of 5da6 in space group R32

PDB code 5da6 comprises 1390 atoms in the asymmetric unit. Placing an ED peak at any of its
potassium sites result in the correct solution (see 5DA6-R32\1-ATOM.INP). 5da6 can also be solved
ab initio using the following INP file (see 5DA6-R32\SOLVE.INP):

charge_flipping
 cf_hkl_file sf.cif ‘ Structure factor file from PDB
 space_group R32
 a 42.890 b 42.890 c 266.936 ga 120.00
 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 symmetry_obey_0_to_1 0.25 find_origin 0
 pick_atoms *
 pick_fwhm 5 omit_fwhm 1 insert_fwhm 1

Solving proteins at atomic resolution 79

79 Solving proteins at atomic resolution

 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 15);
 insert 10
 flip_regime_2 = Sine_Wave(50 / 4, -2, 2, 50);
 ATP(1000, 1) ‘ Randomize all phases every 1000 iterations

It takes approximately six hours on average to solve 5da6 using the above INP file on an 8-core
laptop computer. This time is reduced to 5 minutes on the Cloud where the INP file is run simul-
taneously on 500 VMs. The best solution on each VM computer or the best solution overall can be
viewed during the process. A typical Cloud run looks like:

Deconvolution 80

80 Deconvolution

10. DECONVOLUTION

[A0_matrix_is_constant]
[create_pks_name $a_name]
[create_pks_fn $fn_name]

Examples
TEST_EXAMPLES\DECONVOLUTION\

PBSO4-DECON.INP
SIM-CALC.INP
SIM-DECON.INP

The deconvolution method of aCoelho (2018) has been implemented; it uses three macros found
in TOPAS.INC, Deconvolution_Init, Deconvolution_Bkg_Penalty and Deconvolution_Intensity_Pen-
alty. The method refines on linear parameters only; these linear parameters are peak intensity
and background parameters; their derivatives are unchanging and hence the A0 matrix is un-
changing. The keyword A0_matrix_is_constant informs the program that only linear parameters
are being refined and hence the A0 matrix is calculated only once. Attempts to use A0_ma-
trix_is_constant with quick_refine, approximate_A, chi2 or with refinement of non-linear param-
eters results in an error.

create_pks_name is a xo_Is dependent keyword that creates a peak at each step along the x-axis
with peak intensity parameter names starting with the string $a_name. Peaks are not created if
peaks already exist for the xo_Is phase. If the ‘$’ character is placed immediately after cre-
ate_pks_name and if create_pks_name is within a macro then the output from create_pks_name
is placed after the macro. create_pks_fn additionally appends a penalty to each peak with the
penalty being written in terms of a function called fn_name. The OUT file is updated with peaks
which looks something like:

xo 5.00 I a25_ 0.00217` penalty = dfn(5,a25_,a26_);
xo 5.02 I a26_ 0.00000` penalty = dfn(5.02,a26_,a27_);
xo 5.04 I a27_ 0.00000` penalty = dfn(5.04,a27_,a28_);

The dfn function takes arguments of x-axis position of the peak and two intensity parameter
names, one at the x-axis position and the other at the next x-axis position. These keywords and
functions are used in macros in the following manner:

Deconvolution_Init(0.5)
xdd …

Deconvolution_Bkg_Penalty(0.5)
xo_Is

Deconvolution_Intensity_Penalty(a, afn)

The deconvolution process comprises three separate refinement runs. 1) Fitting the peaks to the
diffraction pattern with peak shapes fixed to expected peak shapes, 2) creating a calculated pat-
tern with a chosen peak shape, typically a peak shape comprising specimen contributions, and 3)
a final run to produce a deconvoluted pattern with noise. The PBSO4-DECON.INP example is ready
to run, it can be used as a template for other deconvolution processes, it is defined as:

#define DO_REFINEMENT_ ' Step 1
‘#define DO_SPECIMEN_OUT_ ' Step 2
‘#define DO_FINAL_DECON_ ' Step 3
macro Data_File { Pbso4 }

Deconvolution 81

81 Deconvolution

#ifdef DO_FINAL_DECON_
 RAW(..\##Data_File) ' load for comparison purposes
 xdd Data_File##-decon-specimen.xy
 x_calculation_step 0.025
 user_y d1 Data_File##-decon-specimen.xy
 user_y d2 Data_File##-diff.xy
 fit_obj = d1 + d2;
 Out_X_Ycalc(Data_File##-decon-final.xy) ‘ Final deconvoluted pattern
#else
 Deconvolution_Init(0.5)
 RAW(..\##Data_File)
 start_X 15
 bkg @ 0 0 0 0 0 0 0
 Deconvolution_Bkg_Penalty(0.5)
 ‘LP_Factor(17) ‘ Do not include when doing deconvolution
 CS_L(262.73494)
 Strain_L(0.03785)
 #ifdef DO_SPECIMEN_OUT_
 iters 0
 CuKa1(0.0001)
 Out_X_Ycalc(Data_File##-decon-specimen.xy)
 #else ' DO_REFINEMENT_
 Out_X_Difference(Data_File##-diff.xy)
 CuKa5(0.0001)
 Radius(173)
 Full_Axial_Model(10, 10, 10, 4.13679, 4.13679)
 Divergence(1)
 Slit_Width(0.2)
 #endif
 xo_Is
 Deconvolution_Intensity_Penalty(a, dfn)

 #endif

Background should be less than all observed data and it should be graphically inspected during
step 1. Background can be reduced by decreasing the c parameter of the Deconvolution_Bkg_Pen-
alty macro; this parameter can range from 0.05 to 1. If the bases of the peaks are not fitting well,
then the background is still too high. Step 1 and 2 produces output XY files which are then used in
step 3. The exclusion of LP_Factor, and similar peak scaling parameters, is important as peak
intensities are used in a penalty inside the Deconvolution_Intensity_Penalty macro. The deconvo-
lution process can be used for all types of data including neutron TOF; step (1) takes approxi-
mately 10 to 30 seconds on present laptops; steps (2) and (3) takes a trivial amount of time (< 1s).
The deconvolution macros are as follows:

macro Deconvolution_Init(c) {
process_times
A0_matrix_is_constant ‘ All parameters are linear
penalties_weighting_K1 = c; ‘ A value of 0.5 seems sufficient
save_best_chi2 ‘ We want best Chi2; not best Rwp
chi2_convergence_criteria 1e-5
continue_after_convergence ‘ ~100 iterations is typically sufficient (~20s)
pen_weight 1 ‘ Override the default

}
macro Deconvolution_Intensity_Penalty(i_name, fn_name) {

fn fn_name(x, a0, a1) = (a0 - a1)^2 / ((a0 + a1) Yobs_at(x) + 1e-6);
default_I_attributes 1e-6 min 0 val_on_continue = Val Rand(0.99, 1.01);

Deconvolution 82

82 Deconvolution

create_pks_fn fn_name
create_pks_name $ i_name

}
macro Deconvolution_Bkg_Penalty(& c, & w_min) {

xdd_sum #m_unique pen = (Yobs - Get(bkg))^2 / Max(Get(bkg) Yobs, w_min^2);
penalty = pen c;

}
macro Deconvolution_Bkg_Penalty(& c) { Deconvolution_Bkg_Penalty(c, 1) }

pen_weight over-rides the default; the default works but with slower convergence. Note, both
the peak intensity and Bkg penalties are Yobs scale invariant where scaling of Yobs does not
change the magnitude of the penalties relative to 𝜒0

2. Yobs_at is a new function that returns the
value of Yobs at x. w_min in the Deconvolution_Bkg_Penalty macro allows for the setting of the
expected minimum of Yobs*Bkg; a value of 1 for counting statistics. For XYE files, where Yobs is
small and where SigmaYobs used (tof data for example), then w_min should be reduced.

10.1 ... Deconvolution – Simulated pattern

A simulated pattern was created with noise using SIM-CREATE.INP and the instrument contribu-
tion deconvoluted using SIM-DECON.INP; the latter INP file looks like:

/* Three runs to produce the deconvoluted pattern.
 The name of the final deconvoluted pattern is:

 pbso4-decon-final.xy

 Define one at a time in the following:

 #define DO_REFINEMENT_ ‘ Run 1
 #define DO_SPECIMEN_OUT_ ‘ Run 2
 #define DO_FINAL_DECON_ ‘ Run 3
*/
#define DO_REFINEMENT_ ' Step 1
‘#define DO_SPECIMEN_OUT_ ' Step 2
‘#define DO_FINAL_DECON_ ' Step 3, Clear the GUI first

macro Data_File { Sim }
#ifdef DO_FINAL_DECON_
 xdd Data_File##-calc-rand.xy ' load for comparision purposes
 xdd Data_File##-calc-narrow.xy
 user_y d1 Data_File##-decon-specimen.xy
 user_y d2 Data_File##-diff.xy
 fit_obj = d1 + d2;
 Out_X_Ycalc(Data_File##-decon-final.xy)
#else
 Deconvolution_Init(0.5)
 xdd Data_File##-calc-rand.xy
 bkg @ 259.381081 89.8339877 31.6429117 -34.4743462
 34.3097757 -55.7270435 30.631573
 Deconvolution_Bkg_Penalty(0.1)

 /* Specimen */
 CS_L(300)
 CS_G(300)
 Strain_L(0.05)

Deconvolution 83

83 Deconvolution

 Strain_G(0.05)

 #ifdef DO_SPECIMEN_OUT_
 iters 0
 CuKa1(0.001)
 Out_X_Ycalc(Data_File##-decon-specimen.xy)
 #else ' DO_REFINEMENT_
 num_cycles 20
 Out_X_Difference(Data_File##-diff.xy)

 /* Instrument */
 CuKa2(0.001)
 Radius(217)
 Full_Axial_Model(12, 12, 12, 2.3, 7)
 Divergence(1)
 Slit_Width(0.1)
 Absorption(60)
 #endif
 xo_Is
 Deconvolution_Intensity_Penalty(a, dfn)
#endif

The following figure is the deconvoluted pattern (green line, bottom plot) compared with the ex-
pected deconvoluted pattern (red line on top of green line). The top plot (blue line) is the original
simulated pattern with noise and without noise (red line on top of blue line).

(Counts)1/2

Deconvolution 84

84 Deconvolution

Parameter errors determined from refinement using the deconvoluted pattern are almost iden-
tical to errors produced using the original pattern, see aCoelho (2018).

2()

PDF-Generation, generating the Pair Distribution Function 85

85 PDF-Generation, generating the Pair Distribution Function

11. PDF-GENERATION, GENERATING THE PAIR DISTRIBUTION
FUNCTION

[xdd...]
[rebin_with_dx_of !E]
[pdf_generate {

[dr !E]
[r_max !E]
[gr_sst_file = “File”;]
[hat !E [num_hats !E]
[gr_to_fq !E]

}]

Examples

TEST_EXAMPLES\PDF\GENERATE\
FULLERENE\DECON.INP
LIFEPO4\DECON.INP
SILICON\DECON.INP
TUNGSTEN\DECON.INP

PDF generation comprises an inverse Sine transform operating on an ideal diffraction pattern
where background is absent, atomic scattering factors constant, and 2 and peak shapes are
symmetric. The task therefore becomes one of correcting real data such that it matches an ideal
pattern as closely as possible. The corrections include determining a background, atomic scat-
tering factors (if X-ray data), removing Lorentz polarization and removing asymmetry from peak
shapes. To generate the PDF, a deconvolution process similar-to that described in section 10 is
used. It allows for corrections in reciprocal space of peak asymmetry, instrument and emission
profile aberrations, Lorentz polarization and atomic scattering factors corrections. The process
comprises two operations described in a single INP file; these operations are:

• 0) Fit to the reciprocal space diffraction pattern - (Operation 0)

• 1) Generate G(r) - (Operation 1)

• 1.0) Generate ideal pattern Ideal (2) from the parameters determined in step 0.

• 1.1) Convert Ideal (2) to Q space to form Ideal(Q).

• 1.2) Fit a polynomial to Ideal(Q) and save F(Q) = Ideal(Q) – Poly)

• 1.3) Generate G(r) from F(Q)

Each operation requires running the INP file once. Steps 1.0 to 1.3 of operation 1 is performed with
num_runs set to 4.

11.1 ... PDF-Generating - LiFePO4

Fitting to the pattern, operation 0, follows the deconvolution process of aCoelho (2018). Lattice
parameters are not required. A peak is laid down at each data point of the pattern together with
a background and appropriate penalty functions. Approximate peak shapes from a preliminary
peak fitting analysis, using a ‘standard’ for example, is recommended; once determined peak
shapes are not refined. The data entry part of a typical INP file (see LIFEPO4\ DECON.INP for ex-
ample) is as follows:

Include_PDF_Generate
'--
' START USER INPUT SECTION
'--
macro Data_File { LFP_0-8Kcap_AgFGM_2x4soll_Eiger1D_8h.xy }

PDF-Generation, generating the Pair Distribution Function 86

86 PDF-Generation, generating the Pair Distribution Function

macro Capillary_Scan { capillary.xy }
macro Capillary_Rebin { 0.1 } ' Smooth the capillary scan. Zero means no smoothing.
#prm operation = 0; ' Set to 0 to fit to reciprocal space data
 ' Set to 1 to generate F(Q) and G(r)
 ' Set to 2 to fit structure to G(r)
#prm use_narrow_peak_shape = 1; ' A 0 means use full peak shapes in generating G(r)
'--
' Inputs for reciprocal space fit, operation = 0
macro & Average_f { f0_Li + f0_Fe + f0_P + 4 f0_O } ' formula of unit cell
#prm lab_no_monochromator = 1; ' Set to 1 if using Laboratory instrument.
#prm use_Xo_Is_phase = 1; ' Set to 0 if not fitting peaks
#prm use_bkg_penalty = 1;
#prm use_simple_bkg_penalty = 1; ' Set to 1 if counting statistics is not right,
 ' or, maybe when there's Fluorescence.
macro & Bkg_Weighting { 1 }
macro & Intensity_Penalty_Weighting { 1 }
macro & Scale_Peaks { 1 } ' Useful if capillary absorption is inhibiting fitting.
macro & Scale_Yobs_By { 1 } ' Useful if data does not obey counting statistics.
prm pc0 1 ‘ Poly_Capillary coefficients; comment out if
prm pc1 0 ' not using Capillary as background.
inp_text fluorescence_bkg
 {
 bkg @ 3.49160163` -0.96682842` 0.292687899`
 }
inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }
macro Start_X { 2.4 }
macro Finish_X { 103 }
macro Step_X { 0.02 } ' Set to zero to use measured step size.
 ' Set to non-zero if scale_yobs_by is used.
 ' Set to non-zero if unequal x-axis steps.
‘--
' Inputs for generating F(Q), operation = 1
#prm poly_fq = 7; ' Number of parameters for Poly when fitting Poly to F(Q).
 ' View F(Q) plot, it needs to look right.
macro & Qmin { 0.1 }
macro & Qmax { 17.5 }
macro & Soper_Lorch_Constant { 0 } ' best not to use
macro & Exp_Constant { 0 } ' best not to use
macro & Lorch_Constant { 0 } ' best not to use
inp_text fq_poly
 {
 bkg @ 0 0 0 0 0 0 0 0 0
 }
macro FQ_Bkg_Penalty
 {
 weighting = If(X > (X2 - 1), 10, 1); ' Weigh the F(Q) data more at Qmax
 penalty = Bkg_at(X1)^2; ' Restrain F(Q=0) to 0
 }
‘--
' Inputs for generating G(r) from F(Q), operation = 1
macro R_Max { 100 }
macro dR { 0.01 }
macro Num_Hats { 3 } ' Best smoothing function for speed and accuracy
macro & Hat_Size { 4.4934 / Qmax }
‘--

PDF-Generation, generating the Pair Distribution Function 87

87 PDF-Generation, generating the Pair Distribution Function

' Reciprocal space peak details, operation = 0
macro Full_Emmision_Profile
 {
 lam ymin_on_ymax 0.001
 la 1 lo 0.5609 lg 1e-6
 la 0.55150 lo 0.5649441 lg 1e-6
 }
macro Deconvoluted_Emmision_Profile
 {
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 }
macro Full_Peak_Shape_Specimen
 {
 CS_G(, 70)
 CS_L(, 45)
 Strain_L(, 0.042)
 Strain_G(, 0.42)
 }
macro Full_Peak_Shape
 {
 Full_Peak_Shape_Specimen
 Full_Axial_Model(10,10,10, 2.3, 5.73430)
 }
macro Deconvoluted_Peak_Shape
 {
 Deconvoluted_Emmision_Profile
 #if (use_Xo_Is_phase == 0)
 ' Using (Yobs - background); ie. no peak shape
 #elseif (use_narrow_peak_shape)
 ' Use Narrow peak shape
 ZE(, -0.00730929318) ‘ Set to negative of Rietveld fit
 gauss_fwhm 0.05
 #else ‘ Use Full peak shape specimen
 Full_Peak_Shape_Specimen
 ZE(, -0.00730929318) ‘ Set to negative of Rietveld fit
 #endif
 }
macro & LP_Factor_
 {
 #if (lab_no_monochromator)
 (1 + Cos(X Pi/ 180)^2)
 #endif
 1 / (Sin(X Pi/360)^2 Cos(X Pi/360)) ' Lorentz factor
 }
'--
' END USER INPUT SECTION
'--
Include_PDF_Generate_Common
'--
#if (And(use_Xo_Is_phase, Run_Number == 0, Or(fit_to_data, generate_fq_gr_from_fit)))
 xo_Is
 PDF_Generation_Intensity_Penalty(a,dfn, Intensity_Penalty_Weighting, Scale_Peaks)
#endif
'--

The user needs to input data such as the name of the data files etc… It is best to create a new
directory for each data file. The PDF-GENERATE.INC file, included using the Include_PDF_Generate

PDF-Generation, generating the Pair Distribution Function 88

88 PDF-Generation, generating the Pair Distribution Function

macro, contains PDF generation specific macros. Capillary_Scan is the name of the file corre-
sponding to a scan of the empty capillary sample holder. Typically, the capillary scan is collected
in a short time leading to poor counting statistics; Capillary_Rebin can therefore be used to
smooth the capillary scan. Setting the #prm called operation to 1 instructs the program to per-
form the fitting process. Setting use_narrow_peak_shape to 1 result in narrow peaks being used
in the generation of the Ideal(2) (operation 1.0); this removes peak broadening as a function of
2.

11.1.1 Operation 0 – Fitting peaks to the diffraction pattern

If use_Xo_Is_phase=0 then no peak fitting is performed and hence no deconvolution; the ideal
pattern is created using (Yobs – Ycalc)/ (LP_Factor <f>), where Ycalc in this case is the back-
ground function. Also, use_simple_bkg_penalty should also be set to 1. When use_Xo_Is_phase=1,
peaks are fitted. The program internally creates peaks and places them at the position of the
xo_Is phase. lab_no_monochromator=1 instructs the program that the data is from a Laboratory
instrument without a monochromator. Background is described as follows:

Background = Poly_Capillary * Capillary_Scan + Poly_Fluorescence

Poly_Capillary is a 1st order polynomial with coefficients defined by the pc0 and pc1 parameters.
Poly_Fluorescence is also a nth order Chebyshev polynomial with coefficients defined by the user
at the inp_text fluorescence_bkg {} construct; set this construct to blank when not using.
LiFePO4 fluoresces and its best to use the smallest number of bkg parameters whilst producing
a good background fit. In the case of LiFePO4, the high angle peaks seem to vanish. This means
that the background should be almost equal to Yobs at the highest angle X2. Such a condition can
be enforced using a penalty as shown in the inp_text called fit_extra. The penalty describes the
following:

(Poly_Capillary(X2) * Capillary_Scan(X2) + Poly_Fluorescence(X2) – Yobs_at(X2))2

X2 is the reserved parameter name corresponding to the end of the diffraction pattern. Poly_Ca-
pillary at X2 is simply (pc0 + pc1), see the X0_ macro in PDF-GENERATE_COMMON.INC, and Poly_Flu-
orescence(X2) corresponds to Bkg_at(X2). The penalty therefore looks like:

inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }

The fit for LiFePO4 looks like:

PDF-Generation, generating the Pair Distribution Function 89

89 PDF-Generation, generating the Pair Distribution Function

Notice the display of the background line as well as the small difference plot. When rerunning,
operation=0, the peaks at the xo_Is phase is not recreated if they are already present. It may be
necessary, therefore, to delete the peaks at the xo_Is phase when rerunning operation=0. When
use_simple_bkg_penalty=0, the full background penalty is used which relies on counting statis-
tics. For data that does not obey counting statistics, the macros Scale_Yobs_By can be used to
scale the observed diffraction pattern. This scaling is performed using the user_y keyword as fol-
lows:

user_y data_file Data_File
yobs_eqn data.sst = data_file Scale_Yobs_By;

min = Start_X; max = Finish_X; del = Step_X;

Note, user_y can also be a function of the reserved parameter X. The input created for the Kernel
can be viewed in TOPAS.LOG.

11.1.2 Operation 1 – Generation G(r) from the fitted peaks

The macro Average_f is used to calculate the average atomic scattering factor <f> for operation
1.0. For X-ray data, a rough estimate of the atomic species is helpful; for neutron data an estimate
is not required. Applying smoothing functions on F(Q) such as the Lorch and Soper-Lorch func-
tions is not recommended. Instead, applying three hat convolutions directly to G(r) is faster and
more accurate. At operation 1.1 the ideal pattern is converted to Q space. Operation 1.2 generates
F(Q) by fitting a polynomial to Ideal(Q) where:

F(Q) = Ideal(Q) – Poly_FQ

fq_poly describes Poly_FQ using the Chebyshev polynomial of bkg; the optimum number of coef-
ficients is difficult to determine automatically. Its best to inspect the plots produced by operation
1; these are generated and loaded into the GUI and, using the Tiling option, looks like:

2Th Degrees

10080604020

C
o

u
n

ts

140

120

100

80

60

40

20

0

PDF-Generation, generating the Pair Distribution Function 90

90 PDF-Generation, generating the Pair Distribution Function

Changing fq_poly and rerunning operation 1 updates the four plots; this updating is achieved us-
ing the keyword gui_reload. Using the structure of LiFePO4, the generated G(r) can be fitted-to
by setting operation=2. With use_narrow_peak_shape=0 we get:

The grey line at the center of the plot is a correction added to the calculated G(r) using:

fit_obj = a1 Cos(a2 X + a3) / X;

If this grey line is significant in intensity, then the value of F(Q=0) is incorrect. Controlling the be-
haviour of F(Q) at the start and end of the Q range can be done from the FQ_Bkg_Penalty macro.
For example, F(Q=0)=0 can be set using following penalty:

r (Angstroms)

10080604020

G
(r

)
(a

.u
.)

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

For tiling of plots

PDF-Generation, generating the Pair Distribution Function 91

91 PDF-Generation, generating the Pair Distribution Function

penalty = Bkg_at(X1)^2;

For operation 1; intermediate pre-processed text fed to the kernel can be sent to TOPAS.LOG (or
TC.LOG) for viewing by setting suspend_writing_to_log_file to 0. For the current example,
TOPAS.LOG for the operation 1.0 part is as follows (comments added):

iters 0

yobs_eqn aac.sst = 1; min 0.01 max = 103; del 0.0025
 gui_ignore
 Out_XDD_SST(decon.sst) ‘ Not expanded for clarity
 ‘ Output Ycalc / (polarization * <f>)
 = Ycalc / (((1 + Cos(X 3.14159265358979/ 180)^2) 1 / (Sin(X

3.14159265358979/360)^2 Cos(X 3.14159265358979/360))) (f0__(
0.974637,0.158472,0.811855,0.262416,0.790108,0.002542,4.334946,0.342451,97.10296
6,201.363831,1.409234) + f0__(12.311098,1.876623,3.066177,2.070451,6.975185,-
0.304931,5.009415,0.014461,18.743040,82.767876,0.346506) + f0__(
1.950541,4.146930,1.494560,1.522042,5.729711,0.155233,0.908139,27.044952,0.07128
0,67.520187,1.981173) + 4 f0__(
2.960427,2.508818,0.637853,0.722838,1.142756,0.027014,14.182259,5.936858,0.11272
6,34.958481,0.390240))^2);

 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 th2_offset = (-0.00730929318);
 gauss_fwhm 0.05 ‘ Use narrow deconvoluted peak
 xo_Is
 extra_X_left = Max(X1 - Max(X1 - 1, 0.1), 0);
 extra_X_right = Max(Min(X2 + 1, 179.9) - X2, 0);
 fn dfn (x, a0, a1) = (a0 - a1)^2 / Max(a0 + a1, 1e-6);
 default_I_attributes 1e-6 min 0 val_on_continue = Val Rand(0.5, 2) + 1e-4;
 create_pks_fn dfn create_pks_name $ a
 xo 1.40009871 I a50_ 0.0178524321`
 xo 1.42009871 I a50_ 0.0178524321`
 xo 1.44009871 I a50_ 0.0178524321`
 …

The actual generation of G(r) occurs when Run_Number = 3; its INP text looks like:

 iters 0
 xdd fq.sst
 gui_reload
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 rebin_with_dx_of 0.001
 pdf_generate {
 dr = 0.01;
 r_max = 100;
 gr_sst_file = "gr";
 hat = 4.4934 / (17.5); num_hats = 3;
 }

11.1.3 Correcting the PDF due to a zero error in reciprocal space

A zero-error added to peak positions in reciprocal can be subtracted from the deconvoluted pat-
tern of operation 1.0. Thus, a zero-error determined from fitting to a standard in reciprocal space
needs to be subtracted from the deconvoluted pattern from within the Deconvo-
luted_Peak_Shape macro.

PDF-Generation, generating the Pair Distribution Function 92

92 PDF-Generation, generating the Pair Distribution Function

11.1.4 Generating F(Q) from G(r) - gr_to_fq

The LIFEPO4\GR-TO-FQ.INP file creates G(r) from an F(Q) file at Run_Number 0, then in Run_Num-
ber 1 it uses the newly created G(r) to reproduce the original F(Q) using gr_to_fq. The INP file is as
follows:

num_runs 3
#if (Run_Number == 0)
 xdd fq-original.sst
 rebin_with_dx_of 0.005
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 pdf_generate {
 dr = 0.01;
 r_max = 300;
 gr_sst_file = "gr-from-fq";
 }
#elseif (Run_Number == 1)
 xdd gr-from-fq.sst
 gui_ignore
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 pdf_generate {
 dr = 0.00125;
 r_max = 17.5;
 gr_sst_file = "fq-from-gr";
 gr_to_fq 1
 }
#elseif (Run_Number == 2)
 xdd fq.sst
 rebin_with_dx_of 0.01
 user_y fq_from_gr fq-from-gr.sst

 prm a 1 min 1e-6
 fit_obj = fq_from_gr a;
#endif

Run_Number 3 fits the newly created F(Q) to the original F(Q); the result showing the reproduced
F(Q) (in red) and the original F(Q) (in blue) has a small difference plot and is as follows:

 Q

161412108642

F
(Q

)
(a

.u
.)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

PDF-Generation, generating the Pair Distribution Function 93

93 PDF-Generation, generating the Pair Distribution Function

11.1.5 PDF-Generating - Fullerene

In this example G(r) from TOPAS is compared to G(r) from GudrunX for Fullerene. The INP file is:

Include_PDF_Generate
'--
' START USER INPUT SECTION
'--
macro Data_File { i15-1-20401_tth_det2_0.xy }
macro Capillary_Scan { i15-1-20398_tth_det2_0.xy}
macro Capillary_Rebin { 0 } ' Smooth the capillary scan. Zero means no smoothing
#prm operation = 1; ' Set to 0 to fit to reciprocal space data
 ' Set to 1 generate F(Q) and G(r)
 ' Set to 2 to fit structure to G(r)

#prm use_narrow_peak_shape = 1; ' Use narrow peak shapes in the generating G(r)
'--
' Inputs for reciprocal space fit, operation == 0
#prm lab_no_monochromator = 0; ' Set to 1 if using Laboratory instrument
#prm use_Xo_Is_phase = 0; ' Set to 0 if not fitting peaks
#prm use_bkg_penalty = 1;
#prm use_simple_bkg_penalty = 1; ' Set to 1 if counting statistics is not right
 ' or maybe when there's Fluorescence
macro & Bkg_Weighting { 1 }
macro & Intensity_Penalty_Weighting { 1 }
macro & Scale_Peaks { 1 } ' Useful if capillary absorption is inhibiting fitting.
macro & Scale_Yobs_By { 1 } ' Useful if data does not obey counting statistics.

prm pc0 1.09673044` ‘ Multiplies Capillary by (pc0 + pc1 x0)
prm pc1 0.146927936 ' Comment out if not using Capillary as background.
inp_text fluorescence_bkg { }
inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }
macro Start_X { 0.6 }
macro Finish_X { 59.9 }
macro Step_X { 0.02 } ' Set to 0 to use measured step size.
 ' Set to non-zero if scale_yobs_by is use.
 ' Set to non-zero if unequal x-axis.
'--
' Input for generating F(Q) - operation == 1
macro & Average_f { f0_C }
macro & Qmin { 0.5 }
macro & Qmax { 25 }
macro & Soper_Lorch_Constant { 1.1 } ' Used for comparison purposes
macro & Exp_Constant { 0 }
macro & Lorch_Constant { 0 }
inp_text fq_poly
 {
 bkg @ 0 0 0 0 0 0 0 0 0
 }
macro FQ_Bkg_Penalty { }
'--
' Inputs for generating G(r) from F(Q), operation == 1
macro R_Max { 50 }
macro dR { 0.01 }

PDF-Generation, generating the Pair Distribution Function 94

94 PDF-Generation, generating the Pair Distribution Function

macro Num_Hats { 0 } ' Best smoothing funcion for speed and accuracy
macro & Hat_Size { 4.4934 / Qmax }
'--
' Reciprocal space peak details, operation == 0
macro Full_Emmision_Profile
 {
 lam ymin_on_ymax 0.0005 la 1 lo 0.161669 lg 1e-6
 }
macro Deconvoluted_Emmision_Profile
 {
 Full_Emmision_Profile
 }
macro Full_Peak_Shape_Specimen { }
macro Full_Peak_Shape { }
macro Deconvoluted_Peak_Shape
 {
 Deconvoluted_Emmision_Profile
 #if (use_Xo_Is_phase == 0)
 ' Using (Yobs - background); ie. no peak shape
 #elseif (use_narrow_peak_shape)
 ' Use Narrow peak shape
 gauss_fwhm 0.05
 #else
 ' Use Full peak shape
 Full_Peak_Shape_Specimen
 #endif
 }
macro & LP_Factor_
 {
 #if (lab_no_monochromator) (1 + Cos(X Pi/ 180)^2) #endif
 1 / (Sin(X Pi/360)^2 Cos(X Pi/360)) ' Lorentz factor
 }
'--
' END USER INPUT SECTION
'--
Include_PDF_Generate_Common
'--

In this example peaks are not fitted and as such use_Xo_Is_phase=0, use_simple_bkg_penalty=1.
fluorescence_bkg is left empty as Fluorescence is not present. fit_extra is used where a penalty
is applied equating the bkg_tot to the Yobs value at the end of the diffraction pattern. Note, the
use of the Value_at_X function. bkg_tot in this example comprises a fit_obj which corresponds to
(pc0 + pc1 x)*Capillary. In this example the Soper_Lorch_Constant was used in order to match Gud-
runX. G(r) generated for TOPAS (in red) and GudrunX (in Blue) is as follows:

PDF-Generation, generating the Pair Distribution Function 95

95 PDF-Generation, generating the Pair Distribution Function

r (Angstroms)

50454035302520151050

G
(r

)
(a

.u
.)

5

4

3

2

1

0

-1

-2

-3

PDF refinement 96

96 PDF refinement

12. PDF REFINEMENT

[xdd]…
[pdf_data]
[scale_phase_X1 E]…
[fit_obj1 E]…
[start_X #] [finish_X #]
[rebin_with_dx_of1 !E]

[rebin_start_x_at !E]
[weighting !E]
[Tpdf_convolute]…
[str]…

[scale_phase_X1 E]…
[scale E]
[view_structure]
[rigid]…
[occ_merge $sites]…
[pdf_scale_simple]
[pdf_zero1 E]
[pdf_ymin_on_ymax 0.001]
[pdf_info]
[Tpdf_convolute]…
[pdf_for_pairs $sites_1 $sites_2]…

[pdf_only_eq_0]
[pdf_gauss_fwhm1 E]
[Tpdf_convolute]...

Tpdf_convolute
[pdf_convolute1 E]...

[min_X !E]
[max_X !E]
[convolute_X_recal !E]

Examples

INP files

TEST_EXAMPLES\PDF\
BEQ-2.INP
BEQ-2-CREATE.INP
BEQ-3.INP
BEQ-3-CREATE.INP
PDF-1.INP
PDF-2.INP
ALVO4\

STRUCTURE-SOLUTION-CREATE.INP
STRUCTURE-SOLUTION.INP
RIGID.INP

OCC-MERGE-PBSO4\
CREATE.INP
OCC-MERGE-TEST.INP
OCC-MERGE.INP

Data files

TEST_EXAMPLES\PDF\
BEQ-2.XY
BEQ-3.XY
ALVO4\ALVO4.XY
OCC-MERGE-PBSO4\PBSO4.XY

1) Can be a function of the reserved parameter name X; X corresponds to r for PDF data.

PDF refinement as implemented operates at speed (Coelho, 2015). PDF patterns are treated as an
xdd where most xdd keywords can be used. PDF patterns can be refined simultaneously with
other types of xdd patterns where the latter can comprise x-ray dependent or x-ray independent
phases. Penalties, restraints and keywords such as rigid, atomic_interaction, sites_geometry,
sites_distance etc. can all be used. pdf_data tells the program that the data set is of G(r) type.
Let’s write G(r) as:

G(r) = s1 S(r) / r – s2 r

where r corresponds to the x-axis, s1 and s2 are constants and S(r) are the pairs. pdf_scale_simple
tells the program to calculate S(r)/(Np r) only. pdf_ymin_on_ymax defines the min/max value for
the PDF Gaussians in-regards-to the x-axis extents of the Gaussians; the default value of 0.001 in

PDF refinement 97

97 PDF refinement

typically sufficient. pdf_for_pairs can be used to select site pairs using the site name; for exam-
ple:

pdf_for_pairs "V* Al* !O2" *

The ‘!’ character excludes the sequence from the wild card string, see section 17.20. Multiple
pdf_for_pairs can be defined. pdf_only_eq_0 informs the parent pdf_for_pairs that only equivalent
position 0 is to be considered. pdf_gauss_fwhm is used to write the width equation for the pairs
selected by pdf_for_pairs. If all pairs are described by pdf_for_pairs then the associated beq’s are
not used; the user is informed of unused beq’s. Consider the following abbreviated INP segment:

site Al1 ... beq 1
site O1 ... beq 1
pdf_for_pairs Al1 Al1 pdf_only_eq_0 pdf_gauss_fwhm 0.1 ‘ Line A
pdf_for_pairs Al1 O1 pdf_only_eq_0 pdf_gauss_fwhm 0.2 ‘ Line B
pdf_for_pairs Al1 O1 pdf_gauss_fwhm 0.3 ‘ Line C

The FWHMs of the interactions are as follows:

Al1-O1 : Interactions for equivalent-position-0 described using Line B.

Al1-O1 : Interactions excluding equivalent-position-0 described using Line C.

O1-O1 : Interactions described using beq’s.

pdf_info displays the interactions in matrix form; for the above INP segment we have:

pdf_info
{

- = No pdf_for_pairs defined hence beq’s used
0 = pdf_for_pairs defined with pdf_only_eq_0
1 = pdf_for_pairs defined without pdf_only_eq_0
2 = two pdf_for_pairs defined, one with and one without pdf_only_eq_0

 Al1 -2
 O1 2-

}

The matrix is in purple. pdf_for_pairs together with beq defaults offer great flexibility in describ-
ing peak widths. See PDF-1.INP, PDF-2.INP, BEQ-3.INP. scale_phase_X can be used to describe
Gaussian dampening, for example:

prm damp_fwhm 50 min 1e-6 max 200
prm damp = Gauss(0, damp_fwhm);
scale_phase_X = damp;

12.1 ... pdf_only_eq_0

Consider the space group P-1 with two equivalent positions, E0 and E1:

E0) x, y, z
E1) -x, -y, -z

PDF refinement 98

98 PDF refinement

The PDF comprises interactions between all atom pairs. From symmetry, only interactions be-
tween E0 and the rest of the atoms are calculated. For a two-atom structure in P-1, with atoms A
and B, the PDF comprises unique interactions between the following pairs:

A0-A0, A0-A1, A0-B0, A0-B1, B0-B0, B0-B1, B0-A1

Each interaction can be defined separately using a combination of beq and pdf_for_pairs. If the
following is defined:

site A beq = a;
site B beq = b;
pdf_for_pairs A B pdf_gauss_fwhm = ab;
pdf_for_pairs B B pdf_only_eq_0 pdf_gauss_fwhm = b0b0;

then the 7 types of interactions would have broadening as follows:

Pair Gauss FWHM

A0-A0 Sqrt(a 2 Ln(2) / Pi^2)

A0-A1 Sqrt(a 2 Ln(2) / Pi^2)

A0-B0 ab

A0-B1 ab

B0-B0 b0b0

B0-B1 Sqrt(b 2 Ln(2) / Pi^2)

B0-A1 ab

For equivalent-position-0 and for distances within 10 Å then the following is required:

pdf_for_pairs * * pdf_only_eq_0
pdf_gauss_fwhm = If(X < 10, something, 0);

pdf_info can be useful for seeing what is being used. Consider three sites A, B, C. For three sites
there are (N^2+N)/2=6 types of atom-atom interactions:

A-A, A-B, A-C, B-B, B-C, C-C

Each of these can have broadening defined in three different ways, take A-A for example:

1) site A ... beq
2) pdf_for_pairs A A
3) pdf_for_pairs A A pdf_only_eq_0

Use of pdf_only_eq_0 results in three types of A-A interactions:

i) interaction where none are equivalent position zero.

ii) interaction where both are equivalent position zero.

iii) interaction where one is equivalent position zero and the other not.

If case (2) is used then (i), (ii) and (iii) all use case (2); for example:

site A ... beq ... pdf_for_pairs A A ...

PDF refinement 99

99 PDF refinement

If case (3) is used, then beq is used for (i) and (iii) and case (3) is used for (ii); for example:

site A ... beq ... pdf_for_pairs A A pdf_only_eq_0...

If both case (2) and (3) are used then beq is ignored and case (2) is used (i) and (iii), and case (3) for
(ii); for example:

site A ... beq ...
pdf_for_pairs A A... ‘ (i) and (iii)
pdf_for_pairs A A pdf_only_eq_0... ‘ (ii)

12.2 ... Inter and Intra molecule FWHMs

pdf_for_pairs can be used to assign different interaction types between molecules. For example,
to set the bond lengths for the atom Al1 of AlVO4 (see PDF-2.INP) for equivalent-position-0 only,
the following could be used:

prm intra_molec 0.01 min 1e-6
pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0

pdf_gauss_fwhm = intra_molec;

The calculated pattern from PDF-2.INP therefore becomes:

Notice the 6 spikes; they correspond to the Al1 bonds with narrow FWHMs. If we wanted Al1 bonds
that are not equivalent-position-0 to be different to the beq’s then we could use:

prm inter_molec 0.1 min 1e-6
prm intra_molec 0.01 min 1e-6
pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0

pdf_gauss_fwhm = intra_molec;
pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6"

pdf_gauss_fwhm = inter_molec;

This gives the following calculated pattern where we see the various Al1 bonds.

Calculated G(r) with a molecule with narrow FWHMs

r (Angstroms)

76543210

G
(r

)
(a

.u
.)

600

500

400

300

200

100

0

-100

-200

PDF refinement 100

100 PDF refinement

The corresponding output from pdf_info becomes:

pdf_info
{
- = No pdf_for_pairs defined
0 = pdf_for_pairs defined with pdf_only_eq_0
1 = pdf_for_pairs defined without pdf_only_eq_0
2 = two pdf_for_pairs defined, one with pdf_only_eq_0 and one without pdf_only_eq_0

 Al1 ------222222------
 Al2 ------------------
 Al3 ------------------
 V1 ------------------
 V2 ------------------
 V3 ------------------
 O1 2-----------------
 O2 2-----------------
 O3 2-----------------
 O4 2-----------------
 O5 2-----------------
 O6 2-----------------
 O7 ------------------
 O8 ------------------
 O9 ------------------
 O10 ------------------
 O11 ------------------
 O12 ------------------
}

An exception is thrown if the same interaction is referenced in more than one pdf_for_pairs, for
example, the following will throw an exception as Al1-O1 is referenced twice:

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0 ...
pdf_for_pairs Al1 O1 pdf_only_eq_0 ...

The following will not throw an exception:

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0 ...
pdf_for_pairs Al1 O1 ...

Calculated G(r) with a molecule with narrow FWHMs

r (Angstroms)

76543210

G
(r

)
(a

.u
.)

600

500

400

300

200

100

0

-100

-200

PDF refinement 101

101 PDF refinement

12.3 ... Instrument Sinc function sinc-1.inp

In SINC-1.INP, pdf_convolute is used at the xdd level to convolute a Sinc function into phases:

pdf_convolute = Sin(Qmax X+q3)/If(Abs(X) < 0.5 Step_Size, If(X < 0,-q2,q2),X);
 min_X = -conv_max;
 max_X = conv_max;

SINC-1.INP also uses an xo_Is phase defined as:

xo_Is
 NoThDependence(0.0001)
 xo 10 I @ 100
 peak_type pv
 pv_lor 0.5
 pv_fwhm 2

pdf_convolute operates on PDF type phases only; the xo_Is phase is untouched. Note the phase
dependent use of an emission profile as defined in the NoThDependence macro. Multiple pdf_con-
volute’s can be described at the global, xdd, str and pdf_for_pairs levels. Use of pdf_convolute as
a dependent of pdf_for_pairs is slower than at the other levels; thus where possible use pdf_con-
volute outside of pdf_for_pairs.

12.4 ... Weighting of PDF and 2-Theta type data

PDF and 2 data can be of very different intensities; xdd_sum can be used to modifying the weigh-
ing of these data in order to give the patterns approximately similar weights. For example:

xdd file1.xy
 xdd_sum !sum1 = Abs(Yobs);
 weighting = 1 / sum1;
xdd file2.xy
 xdd_sum !sum2 = Abs(Yobs);
 weighting = 1 / sum2;
 pdf_data

12.5 ... Test_examples\pdf\beq-2.inp

BEQ-2-CREATE.INP generates a simulated pattern for BEQ-2.INP which:

• comprises the structure of AlVO4,

• 3 types of beq parameters,

• beq is a function of X (i.e. X = r) and hence peak widths are a function of X,

• demonstrates the use of pdf_zero,

• demonstrates the use of rebin_with_dx_of and rebin_start_x_at.

12.6 ... Test_examples\pdf\beq-3.inp

BEQ-3-CREATE.INP generates a simulated pattern for BEQ-3.INP; it demonstrates the use of
pdf_for_pairs.

PDF refinement 102

102 PDF refinement

12.7 ... Speeding up refinement with rebin_with_dx_of

Increasing the x-axis step size of PDF data can speed up refinement; see BEQ-2.INP. The step size
must be of equal size and the start of the x-axis needs to be an integral multiple of the step size.
Data can therefore be rebinned to increase step size as follows:

macro Rebin_Step { 0.015 }
rebin_with_dx_of Rebin_Step rebin_start_x_at Rebin_Step

Rebinning is akin to collecting the data at a larger step size. All data is included; counts after re-
binning is equal to counts before rebinning. esd’s associated with the data are also rebinned. re-
bin_start_x_at can be used to place the start of the data at an integral multiple of the step size. In
BEQ-2.INP parameters such as scale are written in terms of the rebin step size to reflect the fact
that the scaling of the data is changed due to rebinning.

12.8 ... Refining on beq parameters

Modify the BB macro so that its empty as in the following:

macro BB { } ' Enter ! to not refine, beq including low angle fwhm sharpening

This results in refinement of four independent beq parameters including the low angle sharpening
parameter of erf_a as seen in the following:

macro Beq(c, v)
{

#m_argu c
If_Prm_Eqn_Rpt(c, v, min 1e-6 max 10 val_on_continue = Rand(.1, 2);)
beq = CeV(c, v) Erf_Approx(erf_a X);

}

The Rwp plot is:

This type of convergence is indicative of correct derivative calculation. Convergence for coordi-
nates, occupancies, lattice parameters and pdf_zero are similar.

Iteration

200180160140120100806040200

R
w

p
 (

%
)

30

25

20

15

10

5

Launch Mode: C:\c\t5\test_examples\pdf\beq-2.inp

PDF refinement 103

103 PDF refinement

12.9 ... Structure Solution, Simulated Annealing

PDF\ALVO4\STRUCTURE-SOLUTION-CREATE.INP creates a simulated pattern for STRUCTURE-SO-
LUTION.INP. It’s a simulated annealing refinement with all coordinates starting at zero and with
anti-bump penalties applied using:

AI_Anti_Bump(O* , O* , 2.4, 1, 5)
AI_Anti_Bump(Al*, O* , 1.6, 1, 5)
AI_Anti_Bump(Al*, Al*, 2.8, 1, 5)

The correct solution is found as seen in the following:

The range of convergence for atomic coordinates are smaller than with reciprocal space as in
normal Rietveld refinement. This is because the coordinates, in the PDF case, changes peak po-
sitions rather that peak intensities; with the former having a narrow range of convergence. It may
be possible to increase the range of convergence for the PDF case by increasing the peak widths;
this however comes at the expense of resolution and it may result in an even smaller range of
convergence.

12.10 . Rigid bodies with PDF data

PDF\ALVO4\RIGID.INP operates on simulated data created by STRUCTURE-SOLUTION-CREATE.INP.
It demonstrates the use of rigid bodies with PDF data.

12.11 . Occupancy merging with PDF data

PDF\OCC-MERGE-PBSO4\OCC-MERGE.INP operates on simulated data created by CREATE.INP. It
demonstrates the use of occ_merge with PDF data.

12.12 . Equivalence of pdf_gauss_fwhm and beq for one atom type

PDF\SI1.INP comprises an option to use beq or pdf_gauss_fwhm. For the beq case we have:

PDF refinement 104

104 PDF refinement

beq = width;

and for pdf_gauss_fwhm we have:

pdf_gauss_fwhm = Sqrt(width 2 Ln(2) / Pi^2);

The above cases are equivalent when all atoms are of the same type.

Stacking faults 105

105 Stacking faults

13. STACKING FAULTS

[site $name]...
[layer $layer]

[stack $layer]...
[sx E] [sy E] [sz E]
[generate_these $sites]

[generate_name_append $append_to_site_name]

The super cell approach to stacking faults has been implemented. layer identifies a site as be-
longing to a layer called $layer; stack applies a stacking vector { sx, sy, sz } to the named layer.
Structures factors are generated in the usual manner with a shift applied corresponding to the
stacking vector. stack operates in any space group. Sites that do not belong to a layer are treated
as un-stacked and their structure factors are generated in the usual manner. generate_these
generates the sites found in $sites for the stack with coordinates that reflect original $sites po-
sitions plus the stacking vector. generate_name_append appends $append_to_site_name to the
generated site. The generated sites have occupancies set to zero which signals a dummy site.
Dummy sites do not take part in structure factor calculations and hence speed is not hindered.
The dummy sites allow for graphical display of the layers; i.e.

Importantly penalties can operate on dummy sites which allow for restraints such as Dis-
tance_Restrain. The following rules govern the behavior of sites marked with layer:

• A site marked with layer cannot take part in restraints.

• A site marked with layer is not displayed graphically.

• A site generated using generate_these can take part in restraints.

• A site not marked with layer can take part in restraints.

For example:

space_group P1
site O1 ... layer A
site O2 ... layer A

Stacking faults 106

106 Stacking faults

stack A
sx ...
generate_these O1

generate_name_append _1
append_fractional

in_str_format

will output for append_fractional the following:

site O1 ...
site O2 ...
site O1_1 ... occ O 0

The TEST_EXAMPLES\STACKING-FAULTS\KAOLINITE.INP shows how to simplify the setting up of
layers with the use of simple macros. Speed of calculation for structure factors are very fast and
the derivatives of the stacking vectors { sx, sy, sz } are very fast. The main bottle neck in speed is
summing the peaks to Ycalc. The switch “#define Speed” in KAOLINITE.INP shows keywords that
can speed things up in the early stages of determining the stacking vectors.

13.1 ... Fitting to a Debye-formulae pattern using ‘stack’

A test pattern was generated using the Debye scattering equation. The structure comprised a
single atom in an Orthorhombic unit cell with 40 layers (40x40x40 unit cells) in the a-b plane
shifted according to {Round(Rand(0,2))/3, Round(Rand(0,2))/3, 0}. The blue line in the following is
the generated pattern comprising the average of 30 runs of the Debye scattering equation. The
red line corresponds to a Rietveld fit of 6 super cell structures (1x1x40) showing that the super
cell approach is a good approximation to the Debye formulae for this example.

The example STACKING-FAULTS\DEBYE-NEW.INP corresponds to the Rietveld fit using the layer
and stack keywords. The DEBYE-OLD.INP file corresponds to the same Rietveld fit but without the
layer and stack keywords; instead layers are explicitly defined using site in an enlarged unit cell.

There are two time-consuming bottle necks dealt with:

1) Summing peaks to Ycalc

2Th Degrees

7570656055504540353025201510

C
o

u
n

ts

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Stacking faults 107

107 Stacking faults

2) Calculating structure factors for the stacked layers

The phase dependent [del_approx #] groups peaks from the peaks buffer whilst summing peaks
to Ycalc; the peaks are grouped such that their 2Th positions all lie within:

(–del_approx Peak_Calculation_Step) < 2 Th < (del_approx Peak_Calculation_Step)

Once the group is found then only the two peaks with the smallest and largest 2Th is kept. The in-
between peaks have their intensities appropriated to the kept peaks. The peak buffer stretching
routines have also been optimized for both accuracy and speed. The following points should be
noted when working with large super cells

• The layer and stack keywords increase computational speed and reduce memory usage.

• del_approx increase computation speed at a relatively small cost to accuracy; a value be-
tween 1 and 3, dependent on Peak_Calculation_Step, is typically acceptable.

• The graphical display of 10s of 1000s of hkl ticks (there’s 51584 hkls in each phase of the DE-
BYE-NEW.INP) is time consuming; turning the graphical hkl-ticks option Off is worthwhile.

13.2 ... Fitting to Kaolinite data

STACKING-FAULTS\KAOLINITE.INP demonstrates the application of stack and layer with the fol-
lowing fit:

In this example the stacking vectors are refined in a simulated annealing process.

2Th Degrees

130120110100908070605040302010

S
q

rt
(C

o
u

n
ts

)

90

80

70

60

50

40

30

20

10

0

Stacking faults 108

108 Stacking faults

13.3 ... Stacking faults and generating sequences of layers

[generate_stack_sequences] {
[number_of_sequences !E]
[number_of_stacks_per_sequence !E]
[save_sequences $file]
[save_sequences_as_strs $file]
[user_defined_starting_transition $tran-

sition_name]
[layers_tol !E]
[n_avg !E]
[num_unique_vx_vy !N]
[match_transition_matrix_stats {...}]
[transition $transition_name]...

[use_layer $layer]
[height E]
[n !N]
[to $to_transition_name !E]...

[ta E] [tb E] [tz E]
[a_add E] [b_add E] [z_add E]

}
' Get(generated_c)

Examples

\TEST_EXAMPLES\STACKING_FAULTS\
FIT-1.INP
FIT-2.INP
FIT-3.INP
RIETVELD-GENERATE\

CREATE-SEQUENCES.INP
RIETVELD-GENERATE.INP
FIT-TO-RIETVELD-GENERATED.INP
RIETVELD-GENERATED-200-
2000.XY
STRS-200-2000.TXT

Stacking fault generation and refinement can now be performed at speeds that make routine
analysis possible (Coelho et al., 2016). generate_stack_sequences generates sequences of stacks
from the transition matrix described by the transition keyword. The opening and closing braces
of { ... } corresponds to a block where keywords local to generate_stack_sequences can be used.
Outside of the braces the generate_stack_sequences can’t be used. After generation of the se-
quences, Get(generated_c) is updated with the average thickness of the generated sequences. It
can be used to set the c lattice parameter.

On termination of refinement, num_unique_vx_vy reports on the number of unique { sx, sy } stack-
ing vector coordinates for all layer types. transition defines a ‘from’ transition with the name
$transition_name. The transition uses the layer defined in use_layer. to defines the to-transition.
$to_transition_name must be a defined $transition_name. n returns the number of transitions
generated for the corresponding to to-transition. height: can be used instead of z_add keywords.
ta, tb: defines the stacking vector x and y coordinates in terms of the crystallographic a and b
axes. a_add, b_add: defines the stacking vector x and y coordinates relative to the previous
stacking vector in terms of the crystallographic a and b axes. tz: defines stacking vector z coor-
dinate along the crystallographic c axis in Å. add_z: defines stacking vector z coordinate along
the crystallographic c axis in Å relative to the previous stacking vector.

user_defined_starting_transition: if used, stacking begins at the transition with the name of
$transition_name. Otherwise, stacking begins at the transition with the greatest probability ac-
cording to the probability density matrix.

Stacking faults 109

109 Stacking faults

13.3.1 Generating the same stacking sequences each run

To generate the same set of stacking sequences each run the random number generated can be
seeded with a constant seed using seed, for example:

seed #number

#number is a constant integer. Each #number generates its own unique set of random numbers.
Generating identical sets of stacking sequences is useful when changes in Rwp that excludes
stacking sequence variation is required.

13.3.2 The SF_Smooth macro

Stacking faulted calculated patterns can contain ripples when the peak shapes are small or when
there’s too few layers stacked. The SF_Smooth macro, defined in TOPAS.INC smooths out these
ripples such that small supercells can approximate large supercells; this crease computation
speed and reduces memory usage. All stacking fault examples use SF_Smooth; typical usage is:

SF_smooth(@, 1, 1)

The refined parameter adjusts the width of a Gaussian convolution that is dependent on hkls and
the intensities of the reflections. The last argument s (the ‘1’) can be used to adjust the tolerance
of peak_buffer_based_on used in the SF_Smooth macro; the definition of the latter is:

peak_buffer_based_on = idl;
peak_buffer_based_on_tol = Max(0.01 idl, Peak_Calculation_Step 0.5 s);

Reducing s increases the number of peaks in the peaks buffer and increases the accuracy of the
calculated pattern. s=1 is typically sufficient.

13.3.3 Fitting to DIFFaX test diamond data

FIT-1.INP uses generate_stack_sequences to fit to data generated from the DIFFaX suite (Treacy,
1991); the INP segment that generates the sequences looks like:

 generate_stack_sequences {
 number_of_sequences Nseqs 200
 number_of_stacks_per_sequence Nv 200
 num_unique_vx_vy 6
 Transition(1, lpc)
 to 1 = pa; a_add = 2/3; b_add = 1/3; n !n1 349984
 to 2 = 1-pa; a_add = 0; b_add = 0; n !n2 149781
 Transition(2, lpc)
 to 1 = 1-pa; a_add = 0; b_add = 0; n !n3 149781
 to 2 = pa; a_add = -2/3; b_add = -1/3; n !n4 350254
 }

The generated probability parameter pa can be determined using the n values as follows:

prm !pa_gen = (n1+n3)/(n1+n2+n3+n4); : 0.699974874

Stacking faults 110

110 Stacking faults

The fit to the DIFFaX data looks like:

13.3.4 Stacking faults from layers of different layer heights

Layers of different thicknesses can be accurately modelled and with fast refinement. Here’s a fit
to simulated data (FIT-2.INP) for two different layer heights of 5 and 6Å.

13.3.5 Rietveld-Generated example

The files in the RIETVELD-GENERATE directory can be used to create a stacking faulted test pat-
tern using Rietveld refinement; the test pattern can then be refined against. CREATE-SE-
QUENCES.INP creates the INP format stacking sequences and places the result in the file STRS-
200-2000.TXT. The file RIETVELD-GENERATE.INP can be used to create the test pattern RIETVELD-
GENERATED-200-2000.XY. This test pattern can be fitted-to using FIT-TO-RIETVELD-GENER-
ATED.INP; this INP file uses generate_stack_sequences and it demonstrates the accuracy and
speed of the stacking fault averaging procedure. The fit to the Rietveld generated stacking
faulted pattern looks like:

Fit-1.INP, Fitting to DIFFaX test diamond data

2Th Degrees

140130120110100908070605040302010

L
n

(C
o

u
n

ts
)

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

Fit-2.INP, Fitting to test data created with different layer heights

2Th Degrees

140130120110100908070605040302010

S
q

rt
(C

o
u

n
ts

)

180

160

140

120

100

80

60

40

20

0

Stacking faults 111

111 Stacking faults

13.3.6 Refining on layer heights

Layer heights can be refined by refining on parameters that are a function of the add_z or height
keywords. The FIT-3.INP example refines on 3 height parameters as well as the z fractional atomic
coordinates of the sites that comprise the layers. It also lists six types of transitions which oper-
ate on three unique layer types. The transitions points to the unique layer types using use_layer.
The c lattice parameter is defined and refined using the following:

prm qq 0 c = Get(generated_c) + 0.0001 qq; : 1828.085117

Get(generated_c) is also used to initialize the z fractional coordinates of the sites as follows:

prm height_Se01 7.49691
prm !zSe01 = height_Se01 / Get(generated_c);
site Se01 x 0.5 y 0 z = zSe01; occ Se 1 beq !bval 1 layer cd00

The fit to the test data looks like:

Fit-to-Rietveld-Generated.INP

2Th Degrees

3530252015

S
q

rt
(C

o
u

n
ts

)

300

250

200

150

100

50

0

Fit-3.INP, Refining on stacking vector and structural parameters

2Th Degrees

282624222018161412108642

S
q

rt
(C

o
u

n
ts

)

500

400

300

200

100

0

Quantitative Analysis 112

112 Quantitative Analysis

14. QUANTITATIVE ANALYSIS

[xdd]...
[mixture_MAC #]
[mixture_density_g_on_cm3 #]
[weight_percent_amorphous !E]
[elemental_composition]
[element_weight_percent $atom $Name #]...
[element_weight_percent_known $atom #]...
[prm = Get(sum_smvs)...]
[prm = Get(mixture_MAC)…]
[prm = Get(mixture_density_g_on_cm3) …]
[Mixture_LAC_1_on_cm(0)]
[str]...

[cell_mass !E] [cell_volume !E] [weight_percent !E]
[spiked_phase_measured_weight_percent !E] [corrected_weight_percent !E]

[phase_MAC !E]
[prm = Get(sum_smvs)...]
[prm = Get(smv)...]
[prm = Get(sum_smvs_minus_this)...]
[prm = Get_Element_Weight(atom)...]
[Phase_LAC_1_on_cm(0)]
[Phase_Density_g_on_cm3(0)]

Examples in directory TEST_EXAMPLES\QUANT\

The QUANT implementation to a large extent is written internally using the TOPAS Symbolic sys-
tem; the overriding plus is the flexibility allowed. Dependencies are automatically taken care of
and unnecessary recalculations kept to a minimum. QUANT-1.INP uses many of the above key-
words and additionally writes equivalent terms in the form of equations, for example:

prm = 100 Get(smv) / Get(sum_smvs); : 0 ‘ This is weight_percent

prm q = spiked_phase_measured_weight_percent /
 spiked_phase_measured_weight_percent_wt; : 0

prm = q Get(weight_percent); : 0 ‘ This is corrected_weight_percent
prm = 100 (1 - q); : 0 ‘ This is weight_percent_amorphous

14.1 ... Elemental weight percent constraint

If an elemental weight percent was known, and three phases of the mixture comprised this ele-
ment then Get_Element_Weight can be used to get the weight of the element as a function of the
structure; i.e.

Quantitative Analysis 113

113 Quantitative Analysis

str ...
prm z1 = Get_Element_Weight(Zr);
MVW(!m1 0, !v1 0,0)

str ...
scale s2 0.001
prm z2 = Get_Element_Weight(Zr);
MVW(0, !v2 0,0)

str ...
scale s3 0.001
prm z3 = Get_Element_Weight(Zr);
MVW(0, !v3 0,0)

Rearranging the formulae for element weight percent, the scale parameter of one of the phases,
say the first one, can be written as:

scale = (0.01 known_Zr Get(sum_smvs_minus_this) - s2 v2 z2 - s3 v3 z3)
 / (v1 (z1 - 0.01 known_Zr m1));

Get(sum_smvs_minus_this) returns the sum of SMVs minus the phase where it is defined. QUANT-
3.INP demonstrates this constraint with good convergence. It comprises 4 phases with three
comprising Zr atoms. QUANT-2.INP demonstrates constraining a weight percent to a known value
using the macro:

macro Known_Weight_Percent(& w)
{

scale = (w / (100 - w)) Get(sum_smvs_minus_this) / (Get(cell_mass) Get(cell_volume));
}

14.2 ... Elemental composition and Restraints

The xdd dependent element_composition reports on the elemental composition for atoms within
the structures of the xdd, for example:

‘ Before refinement
xdd ...

elemental_composition

‘ After refinement
xdd ...

elemental_composition
{
 Rietveld
 AL 0.875`_0.021
 O 26.135`_0.009
 SI 0.090`_0.003
 Y 6.289`_0.012
 ZR 66.612`_0.029
}

The xdd dependent element_weight_percent returns the weight percent of an element within the
corresponding str’s of the xdd. Example usage:

Quantitative Analysis 114

114 Quantitative Analysis

‘ Before refinement
penalties_weighting_K1 0.1
xdd ...

element_weight_percent Zr+4 zr 0
restraint = (zr - 65); : 0

‘ After refinement
penalties_weighting_K1 0.1
xdd ...

element_weight_percent Zr+4 zr 65.027
restraint = (zr - 65); : 0.027525

In this example zr is the name given to the element Zr+4, the restraint shows a known value of 65
(set for example by XRF results). The refinement obeys the restraint according to the value set
for penalties_weighting_K1. A weight percent can be restrained using:

xdd ...
penalties_weighting_K1 0.2
restraint = (Cubic_Zirconia_wt_percent - 36); : 0
str ...

MVW(0,0, !Cubic_Zirconia_wt_percent 0)

Note the name ‘Cubic_Zirconia_wt_percent’ which is given to weight_percent.

14.3 ... Amorphous phase composition

If spiked_phase_measured_weight_percent is defined then elemental_composition will report on
Rietveld values, Corrected values and values from the original un-spiked sample. If ele-
ment_weight_percent_known keywords are defined then elemental_composition will additionally
report on the elemental contents of the amorphous phase, for example, from QUANT-1.INP we
have:

elemental_composition
{

 Rietveld Corrected Original Other
AL 1.176`_0.042 1.059`_0.000 0.000`_0.000 0.000`_0.000
O 26.271`_0.017 23.640`_0.832 23.162`_0.849 0.838`_0.849
SI 0.104`_0.004 0.094`_0.005 0.096`_0.005 0.000`_0.000
Y 6.182`_0.013 5.563`_0.204 5.676`_0.209 0.000`_0.000
ZR 66.267`_0.055 59.631`_2.185 60.847`_2.229 2.153`_2.229
Other 0.000`_0.000 10.015`_3.224 10.219`_3.290 7.228`_0.212

}

The ‘Rietveld’ and ‘Corrected’ columns corresponds to elemental weight-percents as determined
for the spiked phase; the ‘Original’ and ‘Other’ columns corresponds to elemental weight-percents
of the original phase. The ‘Rietveld’, ‘Corrected’ and ‘Original’ columns sum to 100%. The last row
of the ‘Corrected’ column (purple number) corresponds to Get(weight_percent_amorphous). The
last row of the ‘Other’ column (red number) is the amount of sample that is undefined; it comprises
the Green number minus the elements of the ‘Other’ column. Note the zeros for Al (blue number);
this is due to the spiked phase (dummy test data) being the only phase containing Al.

14.4 ... Using a dummy_str phase to describe amorphous content

If it is known that the amorphous content (purple number) in the above table comprises a known
composition, say TiO2, then a dummy_str can be used to describe the amorphous content, or:

dummy_str

Quantitative Analysis 115

115 Quantitative Analysis

phase_name "Amorphous"
a 5 b 5 c 5
space_group 1
site Ti occ Ti 1
site O occ O 2
Known_Weight_Percent(10.0148)
MVW(0, 0 ,0)

dummy_str’s that are void of MVW takes no part in Quantitative analysis. However, its lattice pa-
rameters and chemistry should correspond to a real structure so that Mixture_LAC_1_on_cm and
phase_LAC can be correctly calculated; in the case of using the Brindley correction these
changed values will change the quantitative results. The space group entry can be different to P1
so long as the chemistry is correct. Inclusion of the dummy_str produces:

elemental_composition
{

 Rietveld Corrected Original
AL 1.059`_0.038 1.059`_0.000 0.000`_0.000
O 27.652`_0.015 27.652`_0.975 27.256`_0.995
SI 0.094`_0.003 0.094`_0.005 0.096`_0.005
TI 6.002`_0.000 6.002`_0.215 6.125`_0.219
Y 5.563`_0.012 5.563`_0.204 5.676`_0.209
ZR 59.631`_0.050 59.631`_2.185 60.847`_2.229
Other 0.000`_0.000 0.000`_3.583 0.000`_3.656

}

Note that the ‘Other’ row becomes zero as the amorphous content is assigned to the dummy_str.
The change in mixture values are:

Without dummy_str:

Mixture_LAC_1_on_cm(557.47740`_0.58665)
mixture_density_g_on_cm3 5.26713308`_0.00292681843

With dummy_str:

Mixture_LAC_1_on_cm(608.85143`_0.76954)
mixture_density_g_on_cm3 5.86601008`_0.00407998952

If XRF results were entered for element_weight_percent_known, for example:

element_weight_percent_known Zr 63
element_weight_percent_known O 24

then we get:

Quantitative Analysis 116

116 Quantitative Analysis

elemental_composition
{

 Rietveld Corrected Original Other
AL 1.059`_0.038 1.059`_0.000 0.000`_0.000 0.000`_0.000
O 27.652`_0.015 27.652`_0.975 27.256`_0.995 -3.256`_0.995
SI 0.094`_0.003 0.094`_0.005 0.096`_0.005 0.000`_0.000
TI 6.002`_0.000 6.002`_0.215 6.125`_0.219 0.000`_0.000
Y 5.563`_0.012 5.563`_0.204 5.676`_0.209 0.000`_0.000
ZR 59.631`_0.050 59.631`_2.185 60.847`_2.229 2.153`_2.229
Other 0.000`_0.000 0.000`_3.583 0.000`_3.656 1.103`_0.431

}

The negative element weight percent for O for the amorphous content reflects the fact that the
measured XRF value for O is lower than the refinement’s value (this example is used for testing;
XRF values are fictitious).

14.5 ... Quant using hkl_Is or other non-str phases

dummy_str’s can be used to represent the quantitative results arising from non-str phases. For
example, consider a phase where the structure is not known but the chemistry is known. If a cal-
ibration constant has been determined relating the hkl_Is intensities to the scale parameter of
the hkl_Is phase, then a dummy_str can be written as follows (see QUANT-6.INP):

dummy_str
phase_name "Linked Cubic Zirconia"
Cubic(5.137866)
space_group F_M_-3_M
site Zr x 0 y 0 z 0 occ Zr 0.85
 occ Y 0.15
site O x 0.25 y 0.25 z 0.25 occ O 0.96
scale = hkl_scale;
Phase_LAC_1_on_cm(0)
Phase_Density_g_on_cm3(0)
MVW(0, 0 ,0)

Note, in this case a space group has been entered with structural parameters that looks like a
known structure; this could, for example, occur where the structure is known in an ordered state,
but the diffraction pattern comprises a disordered state. In other cases, the P1 space group may
suffice with site occupancies corresponding to the appropriate chemistry. The dummy_str is
linked to the hkl_Is phase by assigning the scale parameter of the dummy_str to the scale param-
eters of the hkl_Is phase. QUANT-7.INP is a similar except that a fit_obj is linked to a dummy_str.
Graphically the linked dummy_str is plotted with the calculated pattern of the hkl_Is phase or
fit_obj, for example, QUANT-7.INP produces:

Quantitative Analysis 117

117 Quantitative Analysis

Here the blue line corresponds to the dummy_str which plots the calculated pattern of the linked
fit_obj which in turn comprises a user_y object. The weight percent value determined by the
dummy_str is also displayed.

14.6 ... Summary of Quant examples

• QUANT-1.INP: shows the use of element_weight_percent_known etc.

• QUANT-2.INP: uses the Known_Weight_Percent macro

• QUANT-3.INP: uses elemental constrain using Get_Element_Weight

• QUANT-4.INP: uses Known_Weight_Percent on a hkl_Is phase.

• QUANT-5.INP: uses a dummy_str to describe an amorphous phase

• QUANT-6.INP: uses a hkl_Is phase; links a dummy_str to the hkl_Is phase.

• QUANT-7.INP: uses a fit_obj that is a function of a user_y object to describe a phase; links a
dummy_str to a fit_obj to get QUANT info.

14.7 ... External standard method

The method of O’Connor and Raven (1988) has been implemented in both GUI and Launch modes
using the macros (see TEST_EXAMPLES\K-FACTOR):

macro K_Factor_MAC_K(mac, k, tot) {
move_to xdd
local !k_factor_mac_local_ mac
local !k_factor_k_local_ k
local !k_factor_sum_wps_ = 0; : tot

}

QUANT-7.INP

2Th Degrees

1201101009080706050403020

S
q

rt
(C

o
u

n
ts

)

200

180

160

140

120

100

80

60

40

20

0

-20

Linked Cubic Zirconia 99.78 %

Zircon 0.00 %

Zr O2 0.21 %

Corundum Al2 O3 0.01 %

Quantitative Analysis 118

118 Quantitative Analysis

macro K_Factor_WP(result) {
local k_factor_wp_ = 1.6605402 Get(smv) k_factor_mac_local_

 / k_factor_k_local_; : result
if Prm_There(k_factor_sum_wps_) {

existing_prm k_factor_sum_wps_ += k_factor_wp_;
}

}

14.8 ... QUANT Keywords

[cell_mass !E] [cell_volume !E] [weight_percent !E]
[spiked_phase_measured_weight_percent !E] [corrected_weight_percent !E]

cell_mass, cell_volume and weight_percent correspond to unit cell mass, volume and weight
percent of the phase within the mixture. spiked_phase_measured_weight_percent defines the
weight percent of a spiked phase. It is used by the xdd dependent weight_percent_amorphous
to determine amorphous weight percent. Only one phase per xdd is allowed to contain
spiked_phase_measured_weight_percent. corrected_weight_percent is the weight percent
after considering amorphous content as determined by weight_percent_amorphous. The
weight fraction wp for phase p is calculated as follows:

𝑤𝑝 =
𝑄𝑝

∑ 𝑄𝑝
𝑁𝑝

𝑝=1

where Np = Number of phases.

Qp = SpMpVp/Bp

Sp = Rietveld scale factor for phase p.

Mp = Unit cell mass for phase p.

Vp = Unit cell volume for phase p.

Bp = Brindley correction for phase p,

The Brindley correction is a function of brindley_spherical_r_cm and the phase and mixture
linear absorption coefficients; the latter two are in turn functions of phase_MAC and mix-
ture_MAC respectively, or,

Bp is function of : (LACphase−MACmixture) brindley_spherical_r_cm

LACphase = linear absorption coefficient of phase p, packing density=1.

MACmixture= linear absorption coefficient of the mixture, packing density=1.

This makes Bp a function of the weight fractions wp of all phases and thus wp as written above
cannot be solved analytically. Subsequently wp is solved numerically through the use of itera-
tion.

[mixture_density_g_on_cm3 #]

Calculates the density of the mixture assuming a packing density of 1, see also mixture_MAC.

Quantitative Analysis 119

119 Quantitative Analysis

[mixture_MAC #]

Calculates the mass absorption coefficient in cm2/g for a mixture as follows:

(
𝜇

𝜌
)

𝑚𝑖𝑥𝑡𝑢𝑟𝑒

= ∑ (
𝜇

𝜌
)

𝑖

 𝑤𝑖

𝑁

𝑖=1

where wi and (/)i is the weight percent and phase_MAC of phase i respectively. Errors are
reported for phase_MAC and mixture_MAC. The following example provides phase and mixture
mass absorption coefficients.

xdd ...
mixture_MAC 0
str ...

phase_MAC 0

The macros Mixture_LAC_1_on_cm, Phase_LAC_1_on_cm and Phase_Density_g_on_cm3 cal-
culates the mixture and phase linear absorption coefficients (for a packing density of 1) and
phase density, for example:

xdd ...
Mixture_LAC_1_on_cm(0)
str ...

Phase_Density_g_on_cm3(0)
Phase_LAC_1_on_cm(0)

Errors for these quantities are also calculated. Mass absorption coefficients obtained from
NIST at http://physics.nist.gov/PhysRefData/XrayMassCoef are used to calculate mix-
ture_MAC and phase_MAC.

 [phase_MAC !E]

Calculates the mass absorption coefficient in cm2/g for the current phase. See description for
mixture_MAC.

[weight_percent_amorphous !E]

Determines the amorphous content in a sample. The phase dependent spiked_phase_meas-
ured_weight_percent needs to be defined for weight_percent_amorphous to be calculated.

http://physics.nist.gov/PhysRefData/XrayMassCoef

Magnetic Structure Refinement 120

120 Magnetic Structure Refinement

15. MAGNETIC STRUCTURE REFINEMENT

[str]...
 [mag_only_for_mag_sites]
 [mag_space_group $symbol]
 [site]...
 [mlx E] [mly E] [mlz E] [mg E]
 [mag_only]
 ' Site dependent macros
 MM_CrystalAxis_Display(mxc, myc, mzc)
 MM_CrystalAxis_Refine(mxc, mxv, myc, myv, mzc, mzv, mlx_v, mly_v, mlz_v)
 MM_Cartesian_Display(mxc, myc, mzc)
 MM_Cartesian_Refine(mxc, mxv, myc, myv, mzc, mzv, mlx_v, mly_v, mlz_v)

Thanks to Branton Campbell and John Evans for expert assistance during the implementation of
magnetic refinement. Magnetic refinement is implemented using the keywords mlx, mly, mlz, mg
and mag_space_group. See examples in the TEST_EXAMPLES\MAG directory as well as the tutorial
by John Evans at:

http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_lamno3_magnetic.htm

The Magnetic intensity is given by (* denotes conjugate gradient):

Magnetic intensity = Fmagcperp . Fmagcperp* = |Fmagcperp|

Fmagcperp = Fmagc - (Fmagc . Qhat) Qhat

Or in words, Fmagcperp is the component of the magnetic vector in the direction perpendicular
to the scattering vector Q, where:

Q = (L-1)T * h

Qhat = Q / |Q|

L is the Cartesian lattice parameters in 3x3 matrix form

h is the Miller indices in vector form

* denotes matrix multiplication

Superscript -1 denotes matrix inverse

Superscript T denotes matrix transpose

(L-1)T = reciprocal lattice parameters

Fmagc in terms of the Cartesian lattice parameters is:

Fmagc = L * Fmag

Fmag for the plane h for a single site is:

Fmag = ∑j (Bj * m) Exp(2π i Uj)

http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_lamno3_magnetic.htm

Magnetic Structure Refinement 121

121 Magnetic Structure Refinement

where the summation is over the equivalent positions j and:

Uj = h.Rj x + h.tj

x = { x, y, z } = site fractional coordinates

m = { mlx, mly, mlz } = magnetic moment

Rj = rotation part of space group operator

tj = translational part of space group operator

dj = sj determinant(Rj) = sj det(Rj)

Bj = sj det(Rj) Rj = magnetic transformation matrix

The file MAGDATA.DAT (a GSAS file - permission for use granted by Robert Von Dreele, author of
GSAS) comprises data for calculating magnetic form factors. The Lande splitting factor can be
refined using the site dependent parameter mg; defaults for mg are obtained from MAGDATA.DAT.
Shubnikov groups are obtained from the file SHUBNIKOVGROUPS.TXT. When mag_only is defined,
the x-ray component to intensity for the site in question is ignored. When
mag_only_for_mag_sites is defined the x-ray component to intensity for all magnetic sites for the
str in question is ignored.

15.1 ... Magnetic refinement warnings/exceptions

The following two messages:

1) Warning: Magnetic moment mlx of site Fe has no contribution to Fmag

2) Magnetic moment mlx of site Fe cannot be refined as it has no derivative

arise when for each group of equivalent positions of a special position the first row of the matrix
∑jBj*m is zero where the j’s sum over the equivalent positions of a special position group. Similar
messages for mly and mlz are given. Note, the fact that mlx, mly, mlz may or may not be refined
and their associated constraints are considered. Refinement terminates in the case of message
(2) when mlx is being refined.

15.2 ... Displaying Magnetic moments

Magnetic moments (Occupancy Bj*m) are displayed graphically when view_structure is defined.
For the case where the atom balls are masking the display of the magnetic moment arrows, the
“Atom size” can be varied as shown in the following:

Magnetic Structure Refinement 122

122 Magnetic Structure Refinement

15.3 ... ‘Decomposing’ Fmag for speed

When using magnetic space groups, equivalent positions for space groups other than 1.1 are writ-
ten in terms of other equivalent positions.

Let Cj = cos(Uj),

Sj = sin(Uj)

Exp(i U) = Cj + i Sj = Euler's formulae

For two equivalent positions of a special position we have:

U1 = U2 = U

Fmag1 + Fmag2 = s1 det(R1) R1 m Exp(i U) + s2 det(R2) R2 m Exp(i U)

= (s1 det(R1) R1 + s2 det(R2) R2) m Exp(i U)

= c m Exp(i U)

c is independent of x. Note, a particular special-position could have many equivalent posi-
tions.

If R1 = -R2 and t1 = -t2 for two equivalent positions then:

U1 = -U2 = U

Fmag1 + Fmag2 =

Now,

or,

For s1 = s2,

For s1 = -s2,

s1 det(R) R m Exp(i U) + s2 det(-R) (-R) m Exp(-i U)

det(R) R = det(-R) (-R)

Fmag1 + Fmag2 = det(R) R m (s1 Exp(i U) + s2 Exp(-i U))

Fmag1 + Fmag2 = s1 det(R) R m 2 C

Fmag1 + Fmag2 = s1 det(R) R m (2 i S)

Magnetic Structure Refinement 123

123 Magnetic Structure Refinement

If R1 = R2 for two equivalent positions, then:

Fmag1 + Fmag2 = s1 det(R) R m Exp(i h. R x) Exp(i h.t1) +

s2 det(R) R m Exp(i h. R x) Exp(i h.t2)

= det(R) R m (s1 Exp(i h.t1) + s2 Exp(i h.t2)) Exp(i h. R x)

= c Exp(i h. R x)

c is independent of x and is calculated only once. Many R's can be the same for a particular
space group with only the t's changing.

Calculating C and S:

Exp(i (h . R x + h. t)) = Exp(i h . R x) Exp(i h . t)

Exp(i h . t) is constant for a particular h and is calculated only once.

Only unique Exp(i h . R x) are calculated.

Trigonometric recurrence is used to calculate sines and cosines resulting in three cosine and
three sine operations per unique equivalent r. In other words, a sin and cos are not calculated
for each h. Note a sin or cos function is equivalent to about 40 to 60 multiplies.

Rigid bodies 124

124 Rigid bodies

16. RIGID BODIES

[rigid]...
[point_for_site $site [ux | ua E] [uy | ub E] [uz | uc E]]...

[in_cartesian] [in_FC]
[z_matrix atom_1 [atom_2 E] [atom_3 E] [atom_4 E]]...
[rotate E [qx | qa E] [qy | qb E] [qz | qc E]]...

[operate_on_points $sites]
[in_cartesian] [in_FC]

[translate [tx | ta E] [ty | tb E] [tz | tc E]]...
[operate_on_points $sites]
[in_cartesian] [in_FC]
[rand_xyz !E]
[start_values_from_site $unique_site_name]

Rietveld or Pair Distribution Function refinement can comprise rigid bodies. Rigid bodies com-
prise points in space defined using z_matrix or point_for_site keywords or both simultaneously.
All or some of these points can be operated on using rotate and translate. Rigid body operations
include:

• Translating a rigid body or part of a rigid body.

• Rotating a rigid body or part of a rigid body around a point.

• Rotating a rigid body or part of a rigid body around a line.

ua, ub, uc, ta, tb, tc, qa, qb, qc and the parameters of z_matrix are all refineable parameters which
can comprise parameter attributes such as min/max. The directory RIGID contains rigid body ex-
amples in *.RGD files. These files can be viewed and modified using the Rigid-Body-Editor of the
GUI.

rigid defines the start of a rigid body. point_for_site defines a point in space with Cartesian coor-
dinates given by the parameters ux, uy uz. Fractional equivalents can be defined using ua, ub and
uc. $site is the site that the point_for_site represents. z_matrix defines a point in space with co-
ordinates given in Z-matrix format as follows:

• E can be an equation, constant or a parameter name with a value.

• atom_1 specifies the site that the new Z-matrix point represents.

• The E after atom_2 specifies the distance in Å between atom_2 and atom_1. atom_2 must ex-
ist if atom_1 is preceded by at least one point.

• The E after atom_3 specifies the angle in degrees between atom_3, atom_2 and atom_1.
atom_3 must exist if atom_1 is preceded by at least two points.

• The E atom_4 specifies the dihedral angle in degrees between the plane formed by atom_3-
atom_2-atom_1 and the plane formed by atom_4-atom_3-atom_2. This angle is drawn using
the righthand rule with the thumb pointing in the direction atom_3 to atom_2. atom_4 must
exist if atom_1 is preceded by at least three sites of the rigid body.

• If atom_1 is the first point of the rigid body then it is placed at Cartesian (0, 0, 0). If atom_1 is
the second point of the rigid body then it is placed on the positive z-axis at Cartesian (0, 0, E)

Rigid bodies 125

125 Rigid bodies

where E corresponds to the E in [atom_2 E]. If $atom_1 is the third point of the rigid-body then
it is placed in the x-y plane.

rotate rotates point_for_site’s an amount as defined by the rotate E equation around the vector
defined by the Cartesian vector qx, qy, qz. The vector can instead be defined in fractional coordi-
nates using qa, qb and qc. translate performs a translation of point_for_site’s an amount in Carte-
sian coordinates equal to tx, ty, tz. The amount can instead be defined in fractional coordinates
using ta, tb and tc. rotate and translate operates on any previously defined point_for_site’s; alter-
natively, point_for_site’s operated on can be identified using operate_on_points. oper-
ate_on_points must refer to previously defined point_for_site’s (see section 17.20 for a description
of how to identify sites). in_cartesian or in_FC can be used to signal coordinates are in Cartesian
or fractional atomic coordinates, respectively. When continue_after_convergence is defined,
rand_xyz processes are initiated after convergence. It introduces a random displacement to the
translate fractional coordinates (tx, ty, tz) that are independent parameters. The size of the ran-
dom displacement is given by the current temperature multiplied by #displacement where #dis-
placement is in Å. start_values_from_site initializes the values ta, tb, tc with corresponding values
taken from the site $unique_site_name.

16.1 ... Fractional, Cartesian and Z-matrix coordinates

Rigid bodies can be formulated using fractional or Cartesian coordinates. A Benzene ring without
Hydrogens can be formulated as follows:

prm a 1.3 min 1.2 max 1.4

rigid
 point_for_site C1 ux = a Sqrt(3) .5; uy = a .5;
 point_for_site C2 ux = a Sqrt(3) .5; uy = -a .5;
 point_for_site C3 ux = -a Sqrt(3) .5; uy = a .5;
 point_for_site C4 ux = -a Sqrt(3) .5; uy = -a .5;
 point_for_site C5 uy = a;
 point_for_site C6 uy = -a;
 Rotate_about_axies(@ 0, @ 0, @ 0) ‘ rotate previously defined points
 Translate(@ 0.1, @ 0.2, @ 0.3) ‘ translate previously defined points

The last two statements rotate and translates the rigid body as a whole; their inclusion is implied
if absent. A formulation of any complexity can be obtained from a) databases of existing struc-
tures using fractional or Cartesian coordinates of structure fragments or b) from sketch pro-
grams for drawing chemical structures. A Z-matrix representation of a rigid body explicitly de-
fines the rigid body in terms of bond lengths and angles. A Benzene ring is typically formulated
using two dummy atoms X1 and X2 as follows:

Rigid bodies 126

126 Rigid bodies

str ...
site X1 ... occ C 0
site X2 ... occ C 0
rigid

load z_matrix {
X1
X2 X1 1.0
C1 X2 1.3 X1 90
C2 X2 1.3 X1 90 C1 60
C3 X2 1.3 X1 90 C2 60
C4 X2 1.3 X1 90 C3 60
C5 X2 1.3 X1 90 C4 60
C6 X2 1.3 X1 90 C5 60

}

Atoms with occupancies fixed to zero are dummy atoms and do not take part in structure factor
calculations. Importantly however dummy atoms take part in penalties. The mixing of

point_for_site and z_matrix keywords is possible as follows:

rigid
point_for_site X1
load z_matrix {

X2 X1 1.0
C1 X2 1.3 X1 90 ...

}

Z-matrix parameters are like any other parameter; they can be equations and parameter attrib-
utes can be assigned. For example, the 1.3 bond distance can be refined as follows:

rigid
point_for_site X1
load z_matrix {

X2 X1 1.0
C1 X2 c1c2 1.3 min 1.2 max 1.4 X1 90
C2 X2 = c1c2; X1 90 C1 60
C3 X2 = c1c2; X1 90 C2 60
C4 X2 = c1c2; X1 90 C3 60
C5 X2 = c1c2; X1 90 C4 60
C6 X2 = c1c2; X1 90 C5 60

}

This ability to constrain Z-matrix parameters using equations allow for great flexibility. Example
use could involve writing a Z-matrix bond length parameter in terms of other bond length param-
eters whereby the average bond length is maintained. Or, in cases where a bond length is ex-
pected to change as a function of a site occupancy, an equation relating the bond length as a
function of the site occupancy parameter can be formulated.

16.2 ... Translating part of a rigid body

Once a starting rigid body model is defined, further translate and rotate statements can be in-
cluded to represent deviations from the starting model. For example, if the C1 and C2 atoms are
expected to shift by up to 0.1Å and as a unit then the following could be used:

Rigid bodies 127

127 Rigid bodies

rigid
 load z_matrix {
 X1
 X2 X1 1.0
 C1 X2 1.3 X1 90
 C2 X2 1.3 X1 90 C1 60
 C3 X2 1.3 X1 90 C2 60
 C4 X2 1.3 X1 90 C3 60
 C5 X2 1.3 X1 90 C4 60
 C6 X2 1.3 X1 90 C5 60
 }
 translate
 tx @ 0 min -0.1 max 0.1
 ty @ 0 min -0.1 max 0.1
 tz @ 0 min -0.1 max 0.1
 operate_on_points "C1 C2"

where the additional statements are in purple. The Cartesian coordinate representation allows
an additional means of shifting the C1 and C2 atoms by refining on the ux, uy and uz coordinates
directly, or,

prm a 1.3 min 1.2 max 1.4
prm t1 0 min -0.1 max 0.1
prm t2 0 min -0.1 max 0.1
prm t3 0 min -0.1 max 0.1
rigid
 point_for_site C1 ux = a Sqrt(3) 0.5 + t1; uy = a 0.5 + t2; uz = t3;
 point_for_site C2 ux = a Sqrt(3) 0.5 + t1; uy = -a 0.5 + t2; uz = t3;
 point_for_site C3 ux =-a Sqrt(3) 0.5; uy = a 0.5;
 point_for_site C4 ux =-a Sqrt(3) 0.5; uy = -a 0.5;
 point_for_site C5 uy = a;
 point_for_site C6 uy = -a;

16.3 ... Rotating part of a rigid body around a point

Many situations require the rotation of part of a rigid body around a point. An octahedra (Fig. 16-
1) for example typically rotates around the central atom with three degrees of freedom. To imple-
ment such a rotation when the central atom is arbitrarily placed requires setting the origin at the
central atom before rotation and then resetting the origin after rotation. This is achieved using
the Translate_point_amount macro as follows:

prm r 2 min 1.8 max 2.2
rigid

point_for_site A0
point_for_site A1 ux = r;
point_for_site A2 ux = -r;
point_for_site A3 uy = r;
point_for_site A4 uy = -r;
point_for_site A5 uz = r;
point_for_site A6 uz = -r;
Translate_point_amount(A0, -) operate_on_points "A* !A0"
rotate @ 0 qa 1 operate_on_points "A* !A0"
rotate @ 0 qb 1 operate_on_points "A* !A0"
rotate @ 0 qc 1 operate_on_points "A* !A0"

Rigid bodies 128

128 Rigid bodies

Translate_point_amount(A0, +) operate_on_points "A* !A0"

The point_for_site keywords could just as well be z_matrix keywords with the appropriate Z-ma-
trix parameters. The first Translate_point_amount statement translates the specified points (A1
to A6) an amount equivalent to the negative position of A0. This sets the origin for these points
to A0. The second resets the origin back to A0. If the A0 atom happens to be at Cartesian (0, 0, 0)
then there would be no need for the Translate_point_amount statements.

Fig. 16-1 Model of an ideal octahedron.

Further distortions are possible by refining on different bond-lengths between the central atom
and selected outer atoms. For example, the following macro describes an orthorhombic bipyra-
mid:

macro Orthorhombic_Bipyramide(s0, s1, s2, s3, s4, s5, s6, r1, r2) {
 point_for_site s0
 point_for_site s1 ux r1
 point_for_site s2 ux –r1
 point_for_site s3 uy r1
 point_for_site s4 uy –r1
 point_for_site s5 uz r2
 point_for_site s6 uz –r2
}

Note the two different lengths r1 and r2; with r1 = r2 this macro would describe a regular octahe-
dron.

16.4 ... Rotating part of a rigid body around a line

Instead of explicitly entering fractional or Cartesian coordinates, rigid bodies can be created us-
ing the rotate and translate keywords. For example, two connected Benzene rings, a schematic
without Hydrogens is shown in Fig. 16-2, can be formulated as follows:

prm r 1.3 min 1.2 max 1.4
rigid
 point_for_site C1 ux = r;
 load point_for_site ux rotate qz operate_on_points {
 C2 =r; 60 1 C2
 C3 =r; 120 1 C3
 C4 =r; 180 1 C4
 C5 =r; 240 1 C5
 C6 =r; 300 1 C6

A3

A2 A1

A4

A5

A6

A0

Y

X
Z

Rigid bodies 129

129 Rigid bodies

 }
 point_for_site C7 ux = r;
 load point_for_site ux rotate qz operate_on_points {
 C8 =r; 60 1 C8
 C9 =r; 120 1 C9
 C10 =r; 300 1 C10
 }
 translate tx = 1.5 r; ty = r Sin(60 Deg);
 operate_on_points "C7 C8 C9 C10"

The points of the second ring can be rotated around the line connecting C1 to C2 with the follow-
ing:

Rotate_about_points(@ 50 min -60 max 60, C1, C2, "C7 C8 C9 C10")

The min/max statements limit the rotations to 30 degrees. C5 can be rotated around the line
connecting C4 and C6 with the following:

Rotate_about_points(@ 40 min -50 max 50, C4, C6, C5)

Similar Rotate_about_points statements for each atom would allow for distortions of the Benzene
rings without changing bond distances.

Fig. 16-2. Model of two connected
Benzene rings

Another means of generating Fig. 16-2 and the one that requires the least thought is by using the
Duplicate_Point and Duplicate_rotate_z macros as follows:

prm r 1.3 min 1.2 max 1.4
rigid

point_for_site C1 ux = r;
Duplicate_rotate_z(C2, C1, 60)
Duplicate_rotate_z(C3, C2, 60)
Duplicate_rotate_z(C4, C3, 60)
Duplicate_rotate_z(C5, C4, 60)
Duplicate_rotate_z(C6, C5, 60)
Duplicate_Point(C7, C3)
Duplicate_Point(C8, C4)
Duplicate_Point(C9, C5)
Duplicate_Point(C10, C6)
Rotate_about_points(180, C1, C2, "C7 C8 C9 C10")

C7

C4 C8 C2

C1 C5

C3 C9

C6 C10

Rigid bodies 130

130 Rigid bodies

16.4.1 Using Z-matrix together with rotate and translate

Cyclopentadienyl (C5H5) is a well-defined molecular fragment which shows slight deviations from
a perfect five-fold ring (Fig. 16-3). The rigid body definition using point_for_site keywords is as
follows:

prm r1 1.19
prm r2 2.24
rigid

load point_for_site ux { C1 =r1; C2 =r1; C3 =r1; C4 =r1; C5 =r1; }
load point_for_site ux { H1 =r2; H2 =r2; H3 =r2; H4 =r2; H5 =r2; }
load rotate qz operate_on_points { 72 1 C2 144 1 C3 216 1 C4 288 1 C5 }
load rotate qz operate_on_points { 72 1 H2 144 1 H3 216 1 H4 288 1 H5 }

and using a typical Z-matrix representation:

rigid
load z_matrix {

X1
X2 X1 1
C1 X2 1.19 X1 90
C2 X2 1.19 X1 90 C1 72
C3 X2 1.19 X1 90 C2 72
C4 X2 1.19 X1 90 C3 72
C5 X2 1.19 X1 90 C4 72
X3 C1 1 X2 90 X1 0
H1 C1 1.05 X3 90 X2 180
H2 C2 1.05 C1 126 X2 180
H3 C3 1.05 C2 126 X2 180
H4 C4 1.05 C3 126 X2 180
H5 C5 1.05 C4 126 X2 180

}

This Z-matrix representation is typically used for Cyclopentadienyl; it allows for various torsion
angles but it does not allow for all possibilities. For example, no adjustment of a single Z-matrix
parameter allows for displacement of the C1 atom without changing the C1-C2 and C1-C3 bond
distances. The desired result however is possible using the Rotate_about_points macro:

Rotate_about_points(@ 0, C2, C3, "C1 H1")

Thus, the ability to include rotate and translate together with z_matrix gives great flexibility in
defining rigid bodies.

Rigid bodies 131

131 Rigid bodies

Fig. 16-3. Model of the idealized cyclopenta-
dienyl anion (C5H5).

16.5 ... The simplest of rigid bodies

The simplest rigid body comprises an atom constrained to move within a sphere; for a radius of 1,
this can be achieved as follows:

rigid
point_for_site Ca uz @ 0 min -1 max 1
rotate r1 10 qx 1
rotate r2 10 qx = Sin(Deg r1); qy = -Cos(Deg r1);

The coordinates are in fact spherical coordinates where the rotation parameters r1 and r2 are
communicative. Constraining an atom to within a sphere is a useful constraint for an atomic po-
sition when the approximate position is known. Setting the distance between two sites, or, two
sites A and B a distance 2Å apart can be formulated as:

In Z-matrix form: rigid
z_matrix A ‘ line 1
z_matrix B A 2 ‘ line 2
rotate @ 20 qa 1 ‘ line 3
rotate @ 20 qb 1 ‘ line 4
translate ta @ 0.1 tb @ 0.2 tc @ 0.3 ‘ line 5

In Cartesian form: rigid
point_for_site A ‘ line 1
point_for_site B uz 2 ‘ line 2
rotate @ 20 qa 1 ‘ line 3
rotate @ 20 qb 1 ‘ line 4
translate ta @ 0.1 tb @ 0.2 tc @ 0.3 ‘ line 5

Lines 1 and 2 defines the two points (note ux, uy and uz defaults to 0), line 3 and 4 rotates the two
points around the a and then the b lattice vectors. Line 5 translates the two points to a position
in fractional atomic coordinates of (0.1, 0.2, 0.3). Lines 3 to 5 contain the five parameters associ-
ated with this rigid body. The Set_Length macro can instead be used to set the distance between
the two sites as follows:

Set_Length(A, B, 2, @, @, @, @ 30, @ 30)

H3 H2

H4 H5

C3 C2

C4 C5
l
1

l
2

H1

C1

Y

X

Rigid bodies 132

132 Rigid bodies

where A and B are the site names, 2 is the distance in Å between the sites, arguments 4 to 6 the
names given to the translation parameters and arguments 7 and 8 are the rotational parameters.
Set_Length is not supplied with the translate starting values; these are obtained from the A site
with the use of start_values_from_site located in the Set_Length macro. min/max can be used to
constrain the distance between the two sites, for example:

Set_Length(A, B, @ 2 min 1.9 max 2.1, @, @, @, @ 30, @ 30)

Note, this macro defines the distance between the two sites as a parameter that can be refined.

16.6 ... Generation of rigid bodies

A rigid body is constructed by the sequential processing of z_matrix, point_for_site, rotate and
translate operations. The body is then converted to fractional atomic coordinates and then sym-
metry operations of the space group applied. The conversion of Z-matrix coordinates to Carte-
sian is as follows:

• The first atom, if defined, is paced at the origin.

• The second atom, if defined, is placed on the positive z-axis.

• The third atom, if defined, is placed in the x-z plane.

For Cartesian to fractional coordinates in terms of the lattice vectors we have:

• x-axis in the same direction as the a lattice vector.

• y-axis in the a-b plane.

• z-axis in the direction defined by the cross product of a and b.

Rotation operations are not commutative; the rotation of point A about the vector B-C and then
about D-E is not the same as the rotation of A about D-E and then about B-C. By default, rotate
and translate operate on all previously defined point_for_site’s. Alternatively point_for_site’s can
be explicitly defined using operate_on_points. operate_on_points must refer to previously de-
fined point_for_site’s and it can refer to many sites at once by enclosing the site names in quotes
and using the wild card character ‘*’ or the negation character ‘!’ (see section 17.20), for example:

operate_on_points "Si* O* !O2"

16.7 ... Rigid body parameter errors propagated to fractional coordinates

Errors for fractional coordinates for sites defined as part of a rigid body are propagated to the
site fractional coordinates. The example RIGID-ERRORS\ANILINE_I_100K_X.INP (by Simon Par-
sons) demonstrates the equivalence of two refinements 1) using a rigid body and 2) hand coding
the fractional coordinates in terms of rigid body parameters but not in fact using a rigid body.
Errors and convergence behavior in both cases are identical. Case (2), which has many computer
algebra equations, takes approximately the same time per iteration as case (1); this demonstrates
that computer algebra does not noticeably affect computational speed even in cases where its
use is plentiful.

Rigid bodies 133

133 Rigid bodies

16.8 ... Z-matrix collinear error information

The Z-matrix collinear points exception can be deciphered using information displayed on detec-
tion of the error. The collinear error is due to three atoms on a z-matrix line which are collinear.
The information displayed includes a snapshot of the rigid body operations pertaining to the er-
ror. The following is an example of the information displayed:

DB_x_CB Zero dot product - Z-matrix possible collinear points at atoms
O10
C16 8.91631604e-016 1.0912987e-014 5.2
C15 3.72315026e-016 1.0912987e-014 3.9
C11 0 0 0

Partial z-matrix in error:
rigid

z_matrix C11
z_matrix C12 C11 1.3
z_matrix C13 C12 1.3 C11 120
z_matrix C14 C13 1.3 C12 120 C11 180
z_matrix C15 C14 1.3 C13 120 C11 0
z_matrix C16 C15 1.3 C14 120 C11 180
z_matrix O10 C16 1 C15 108 C11 120

The rigid body fragment can be copied to the Rigid-body editor to investigate why the error is
occurring; i.e.

The O10 line is commented out as it’s the line causing the error. Looking at the O10 line (using the
OpenGL window), we see that atoms C16, C15, C11 lie on a straight line; this is invalid as it becomes
impossible to form the dihedral angle in a non-degenerate manner. The best way to think about a
z-matrix line with 4 atoms A, B, C, D, i.e.

z_matrix A B # C # D #

is to think of two triangles ABC and DBC hinged along the line BC. The angle between the triangles
is the dihedral angle. If B,C,D are collinear then there’s no triangle and the dihedral angle cannot
be formed. Thus, for z-matrices both A,B,C and B,C,D must not be collinear. The program tests
for a zero dot-product numerically with a tolerance of 10-15.

Rigid bodies 134

134 Rigid bodies

16.9 ... Functions allowing access to rigid-body fractional coordinates

The standard macro Point(site_name, rx), see TOPAS.INC, returns the x Cartesian coordinate of
the point called site_name; y and z Cartesian coordinates are returned by ry and rz objects re-
spectively. These functions can only to be used in equations of the rigid body which encompass
the keywords and their dependents of point_for_site, z_matrix, translate and rotate. The actual
value returned by Point depends on where it is used in the rigid-body, for example, in the follow-
ing:

rigid
point_for_site O1
translate tx 1
point_for_site O2 ux = Point(O1, rx); ‘ Point here returns 1
translate tx 2
point_for_site O3 ux = Point(O1, rx); ‘ Point here returns 3

the final x Cartesian coordinate of site O3 becomes 3. To instead return fractional coordinates of
points, the functions Point_rx_ua, Point_rx_ub and and Point_rx_ua can be used. These functions
are passed the address of the point in question using the Point macro with one argument. Accom-
panying macros simplifying the call, as defined in TOPAS.INC, are:

macro Point_ua(site_name) { Point_rx_to_ua(Point(site_name)) }
macro Point_ub(site_name) { Point_ry_to_ub(Point(site_name)) }
macro Point_uc(site_name) { Point_rz_to_uc(Point(site_name)) }

These macros can return many different values for the same point in question depending on
where they are called during the rigid body calculation.

16.10 . Determining the orientation of a known fragment using a Rigid-Body

Determines rotation and translation parameters for a known fragment, see TEST_EXAM-
PLES\RIGID\MATCH.INP. The known fragment is in fractional coordinates. To do the same for a
fragment in Cartesian coordinates then change the lattice angles to 90 degrees and adjust the
lattice parameter lengths. Also, see:

http://topas.dur.ac.uk/topaswiki/doku.php?id=rigid_body_-_matching_to_a_known_fragment

16.11 . Rigid body macros

Set_Length(s0, s1, r, xc, yc, zc, cva, cvb)

Fixes the distance between two sites.

[s0, s1]: Site names.

[r]: Distance in Å.

[xc, yc, zc]: The parameter names for the coordinates of s0.

[cva, cvb]: Parameter names and values for rotations about the x and y axes

http://topas.dur.ac.uk/topaswiki/doku.php?id=rigid_body_-_matching_to_a_known_fragment

Rigid bodies 135

135 Rigid bodies

Set_Lengths(s0, s1, s2, r, xc, yc, zc, cva1, cvb1, cva2, cvb2)
Set_Lengths(s0, s1, s2, s3, r, xcv, ycv, zcv, cva1, cvb1, cva2, cvb2, cva3, cvb3)

Sets the distance between two and three sites, respectively. The two sites case is defined as:

macro Set_Lengths(s0, s1, s2, r, xc, yc, zc,cva1, cvb1, cva2, cvb2)
{
 Set_Length(s0, s1, r, xc, yc, zc, cva1, cvb1)
 Set_Length(s0, s2, r, xc, yc, zc, cva2, cvb2)
}

Triangle(s1, s2, s3, r)
Triangle(s0, s1, s2, s3, r)
Triangle(s0, s1, s2, s3, r, xc, yc, zc, cva, cvb, cvc)

Defines a regular triangle without and with a central atom (s0).

[s0, s1, s2, s3]: Site names. s0 is the central atom of the triangle.

[r]: Distance in Å.

[xc, yc, zc]: Parameter names for the coordinates for the central atom.

[cva, cvb, cvc]: Parameter names and values for rotations about the x, y and z axes.

Tetrahedra(s0, s1, s2, s3, s4, r, xc, yc, zc, cva, cvb, cvc)

Defines a tetrahedra with a central atom.

[s0, s1, s2, s3, s4]: Site names. s0 is the central atom of the tetrahedra.

[r]: Distance in Å.

[xc, yc, zc]: Parameter names for the coordinates for the central atom.

[cva, cvb, cvc]: Parameter names and values for rotations about the x, y and z axes.

Octahedra(s0, s1, s2, s3, s4, s5, s6, r)
Octahedra(s0, s1, s2, s3, s4, s5, s6, r, xc, yc, zc, cva, cvb, cvc)

Defines an octahedra with a central atom.

[s0, s1, s2, s3, s4, s5, s6]: Site names. s0 is the central atom of the octahedra.

[r]: Distance in Å.

[xc, yc, zc]: Parameter names for the coordinates for the central atom.

[cva, cvb, cvc]: Parameter names and values for rotations about the x, y and z axes.

Hexagon_sitting_on_point_in_xy_plane(s1, s2, s3, s4, s5, s6, a)
Hexagon_sitting_on_side_in_xy_plane(s1, s2, s3, s4, s5, s6, a)

Defines a regular hexagon, where the hexagon is sitting on a point or on a side in the x-y plane,
respectively.

[s1, s2, s3, s4, s5, s6]: Site names.

[a]: Distance in Å.

Rigid bodies 136

136 Rigid bodies

Translate(acv, bcv, ccv)
Translate(acv, bcv, ccv, ops)

Performs a translation of the rigid body.

[acv, bcv, ccv]: Amount of the translation in fractional coordinates.

[ops]: Operates on previously defined sites in “ops”.

Translate_with_site_start_values(s0, xc, yc, zc)

Performs a translation using the coordinates of s0 as start values.

[s0]: Site name.

[xc, yc, zc]: Parameter names for the coordinates of s0.

Rotate_about_points(cv, a, b)
Rotate_about_points(cv, a, b, pts)

Performs a rotation about a rotation vector specified by two sites.

[cv]: Amount the rigid body is rotated about the specified rotation vector in degrees.

[a, b]: Rotation vector defined by the sites a and b.

[pts]: Operates on previously defined point_for_site(s).

Note: Do not include points rotated about in the “operate on points” list of the Ro-
tate_about_points macro. For example, in

Rotate_about_points(@ 1 0, C1, C2, " C3 C4 C5 C6 ")

the points C1 and C2 are not included in the “points operated on” list. Note also that Ro-
tate_about_points without a “points operated on” list will operate on all previously defined
point_for_site(s). Therefore, when an “operate on points” list is not defined then it is necessary
to place the “points rotated about” after the Rotate_about_points macro. It is best to specify
an “operate on points” list when in doubt.

Rotate_about_these_points(cv, a, b, ops)

Performs a rotation about a rotation vector specified by two sites.

[cv]: Amount the rigid body is rotated about the specified rotation vector in degrees.

[a, b]: Rotation vector defined by the sites a and b.

[ops]: Operates on previously defined point_for_site(s).

Rotate_about_axies(cva, cvb)
Rotate_about_axies(cva, cvb, cvc)

Performs a rotation about the axes.

Miscellanous 137

137 Miscellanous

17. MISCELLANOUS

17.1 ... Threading

TOPAS is threaded to a large extent; this allows the utilization of multiple processors resulting in
faster program execution. The degree of speedup is computer and problem dependent. For non-
trivial problems, the gain is 2 to 4 for a 4-core laptop PC with four i7 processors. Attention is paid
to reducing memory usage at the thread level. This is particularly apparent when using rigid bod-
ies or occupancy merge where Version 7 uses far less memory than Version 5. Except for penal-
ties all items are threaded; they include peak generation, all convolutions, all derivatives that are
a function of Ycalc, equations that are a function of changing variables such as X, Th, D_spacing
etc..., Pawley refinement, structure refinement, charge flipping, magnetic refinement, stacking
faults, PDF refinement, conjugate gradient solution method and Indexing.

17.1.1 Setting the maximum number of threads

The program defaults to using the maximum number of threads available. The user can limit this
behaviour by editing the file MAXNUMTHREADS.TXT. This file is read on program startup; it con-
tains a single number, let’s call it Max_Threads_File, which defines the maximum number of
threads. Non-existence of the file or a Max_Threads_File of zero results in the program using the
maximum number of threads available. If Max_Threads_File is negative, then the maximum num-
ber of threads is set to the following:

Max_Number_Threads = Max(1, Max_Threads_File + Max_Threads_Available);

17.2 ... Restraining background using the Bkg_at function

The Chebyshev background function, bkg, can sometimes misbehave during Pawley, Le Bail or
deconvolution refinements. In the case of xdd deconvolution refinements, the Deconvolu-
tion_Bkg_Penalty stabilizes bkg in most cases. In cases of instability, however, the Bkg_at(x)
function can be used in penalty functions to guide the shape of bkg. Bkg_at(x) returns the value
of bkg at the x-axis position of x. Here’s an example use of Bkg_at as applied to TOF data:

bkg @ 0.443519294` 0.0200324829` 0.0113774736`
penalty = 1000000 (Bkg_at(2036) - 0.43)^2;
penalty = 1000000 (Bkg_at(9000) - 0.50)^2;
penalty = 1000000 (Bkg_at(14600) - 0.50)^2;

The first penalty restrains the value of bkg at x=2036 to 0.43. Typically, only two to three Bkg_at
penalties are necessary. The values of 0.43, 0.5 and 0.5 can be determined graphically.

17.3 ... Calculation of structure factors

The structure factor F for a reflection (h k l) is the complex quantity:

F = s (AS + i BS) a (fo,a + fa
' + i fa

") Oa (17-1)

Miscellanous 138

138 Miscellanous

The summation s is over the sites of the unit cell and the summation a is over the atoms residing
on site s. Oa and fo,a corresponds to the site occupancy and the atomic scattering factor for atom
’a’ respectively. fa' and fa" are the anomalous dispersion coefficients for atom ’a’. AS and BS corre-
sponds to the cosine and sine summations for site 's', or,

AS = e Ts,e
 cos(2 h . re), BS = e Ts,e sin(2 h . re) (17-2)

where Ts,e
 is the temperature factor and the summation e is over the equivalent positions of site

's' as dictated by the space group. Defining:

fo,s = a fo,a Oa, fs
' = a fa

' Oa, fs
" = a fa

" Oa (17-3)

and separating the real and imaginary components gives:

F = s (As + i Bs) (fo,s + fs'+ i fs
")

F = s (As (fo,s +fs') − Bs fs") + i s (As fs" + Bs (fo,s + fs'))

or, F = A + i B

(17-4)

The intensity is proportional to the complex conjugate of the structure factor, or,

F2 = A2 + B2 (17-5a)

or,

F2 = A01
2 + B01

2 + A11
2 + B11

2 + 2 B01 A11 - 2 A01 B11 (17-5b)

where A01= s As (fo,s + fs
'), A11 = s As fs

"

B01= s Bs (fo,s + fs
'), B11 = s Bs fs

"

and A = A01 − B11, B = B01 + A11

Atomic scattering factors, fo,a, comprise 11 values per atom and are found in the file
ATMSCAT_11.CPP. Correspondingly 9 values per atom, obtained from the International Tables, are
found in the file ATMSCAT_9.CPP. Use of either 9 or 11 values can be invoked by running the batch
files USE_9F0 and USE_11F0 respectively. Dispersion coefficients, fa

' and fa
", are by default from

http://www.cxro.lbl.gov/optical_constants/asf.html.

These data, found in the SSF directory, covers the energy range from 10 to 30000eV. The use of
use_tube_dispersion_coefficients forces the use of dispersion coefficients from the International
Tables for X-ray Crystallography (1995), Vol.C, p384-391 and 500-502, and for O2- from
Hovestreydt (1983). These data are in discrete energy steps corresponding to wavelengths typi-
cally found in laboratory X-ray tubes. For neutron diffraction data, fa

'= fa
"=0 and fo,a is replaced by

the bound coherent scattering length (found in the NEUTSCAT.CPP file) for atom ‘a’ obtained from:

http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM.

http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM

Miscellanous 139

139 Miscellanous

17.3.1 Friedel pairs

For centrosymmetric structures the intensities for a Friedel reflection pair are equivalent, or, F2(h
k l) = F2(-h-k-l). This holds true regardless of the presence of anomalous scattering and regardless
of the atomic species present in the unit cell. This equivalence in F2 is due to B01 = B11 = 0 and thus:

F = A01 + i A11 and F2 = A01
2 + A11

2 (17-6)

For non-centrosymmetric structures and for the case of no anomalous scattering, or for the case
where the unit cell comprises a single atomic species, then F2(h k l) = F2(-h-k-l). Or, for a single
atomic species we have:

B01 A11 = (f0 +f') (S BS) f" (S AS), A01 B11 = (f0 +f') (S AS) f" (S BS)

or, B01 A11 = A01 B11

(17-7)

and thus, from cancellation in Eq. (17-5b) we get:

F2(h) = F2(-h) = A01
2 + B01

2 + A11
2 + B11

2 (17-8)

For non-centrosymmetric structures and for the case of anomalous scattering and for a structure
comprising more than one atomic species then F2(h) F2(-h).

17.3.2 Powder data

Friedel pairs are merged for powder diffraction data meaning that the multiplicities as deter-
mined by the hkl generator includes the reflections (h k l) and (-h -k -l); this improves computa-
tional efficiency. Eq. (17-5b) gives the correct intensity for unmerged Friedel pairs and thus it can-
not be used for merged Friedel pairs. Using the fact that:

A01(h) = A01(-h), A11(h) = A11(-h)

B01(h) = B01(-h), B11(h) = B11(-h)

(17-9)

then F2 from Eq. (17-5b) in terms of B01(h) and B11(h) evaluates to:

F2(h) = Q1 + Q2

F2(-h) = Q1 – Q2

where Q1 = A01
2 + B01

2 + A11
2 + B11

2

and Q2 = 2 (B01 A11 – A01 B11)

(17-10)

and for merged Friedel pairs we get:

F2(h) + F2(-h) = 2 Q1 (17-11)

The factor of 2 in Eq. (17-11) is dropped as its included in multiplicity from the hkl generator. Thus,
the final equation describing F2 for powder diffraction data for merged Friedel pairs is:

Miscellanous 140

140 Miscellanous

F2(h)merged = Q1 (17-12)

The reserved parameter names of A01, A11, B01 and B11 can be used to obtain unmerged real, im-
aginary and F2 components and the merged F2. The following macros have been provided in
TOPAS.INC:

macro F_Real_positive { (A01-B11) }
macro F_Real_negative { (A01+B11) }
macro F_Imaginary_positive { (A11+B01) }
macro F_Imaginary_negative { (A11-B01) }
macro F2_positive { (F_Real_positive^2 + F_Imaginary_positive^2) }
macro F2_negative { (F_Real_negative ^2 + F_Imaginary_negative^2) }
macro F2_Merged { (A01^2 + B01^2 + A11^2 + B11^2) }

Note that F2_Merged = (F2_positive + F2_negative) / 2. The reserved parameters I_no_scale_pks
and I_after_scale_pks for str phases are equivalent to the following:

I_no_scale_pks = Get(scale) M F2_Merged

I_after_scale_pks = Get(all_scale_pks) Get(scale) M F2_Merged

In addition, the macros Out_F2_Details and Out_A01_A11_B01_B11 can be used to output F2 details.

17.3.3 Single crystal data

SHELX HKL4 single crystal data comprise unmerged equivalent reflections and thus Eq. (17-5b) is
used for calculating F2. Equivalent reflections are merged by default and can be unmerged using
dont_merge_equivalent_reflections. For centrosymmetric structures, merging includes the merg-
ing of Friedel pairs and thus Eq. (17-12) is used for calculating F2. For non-centrosymmetric struc-
tures, merging excludes the merging of Friedel pairs and thus (17-5b) is used for calculating F2.
dont_merge_Friedel_pairs prevent merging of Friedel pairs. ignore_differences_in_Friedel_pairs
force the use of Eq. (17-12) for calculating F2. The reserved parameter name Mobs returns the num-
ber of observed reflections belonging to a family of reflections.

Merging of equivalent reflections reduces the computational effort and is useful in the initial
stages of structure refinement. Only a single intensity is calculated for a set of equivalent reflec-
tions even in the absence of merging. Thus, equivalent reflections and Friedel pairs are remem-
bered and intensities appropriated as required.

*.SCR data is typically generated from a powder pattern and comprises merged equivalent reflec-
tions including merged Friedel pairs. Consequently, Eq. (17-12) is used for calculating F2; defini-
tions of dont_merge_equivalent_reflections, dont_merge_Friedel_pairs and ignore_differ-
ences_in_Friedel_pairs are ignored.

17.3.4 The Flack parameter

[Flack E]

For single crystal data and for non-centrosymmetric structures the Flack parameter (Flack, 1983)
scales F2(h) and F2(-h) as follows (see the test example YLIDMA.INP):

Miscellanous 141

141 Miscellanous

F2(h) = Q1 + (1 – 2 Flack) Q2

F2(-h) = Q1 – (1 – 2 Flack) Q2

(17-13)

17.3.5 Single Crystal Output

The macro Out_Single_Crystal_Details, see TOPAS.INC, outputs details for single crystal refine-
ment, see test example YLIDMA.INP. Mobs corresponds to the number of observed reflections be-
longing to a family of planes. When Friedel Pairs are not merged then Mobs for h and –h will be
different. Phase symmetry is considered in the values for A01, B01, A11 and B11.

17.4 ... Convolution

17.4.1 Instrument and sample convolutions

Diffractometer instrument and sample aberration functions used in peak profile synthesis are
generated from generic convolutions. For example, the ‘simple’ axial divergence model is de-
scribed using the generic convolution circles_conv as defined in the Simple_Axial_Model macro.
Table 17-1 lists some of the instrument convolutions supported. In addition, the full axial diver-
gence model of Cheary & Coelho (1998a, 1998b) is supported.

Table 17-1. Instrument and sample aberration functions in terms of 휀 = 2𝜃 − 2𝜃𝑘 , where 2 is
the measured angle and 2k the Bragg angle. RP and RS correspond to the primary and secondary
radius of the diffractometer respectively. 휀𝑚 in 2𝜃

Aberrations Name Aberration function Fn()

Instrument

Equatorial divergence
(fixed divergence slits)

EDFA

[]
𝐹𝑛(휀) = (4휀𝑚휀)−

1
2

 𝑓𝑜𝑟 휀 = 0 𝑡𝑜 휀𝑚 = − (
𝜋

360
) 𝑐𝑜𝑡(𝜃𝑘) 𝐸𝐷𝐹𝐴2

Equatorial divergence (var-
iable divergence slits)

EDFL

(mm)
𝐹𝑛(휀) = (4휀𝑚휀)−

1
2

𝑓𝑜𝑟 휀 = 0 𝑡𝑜 휀𝑚 = −
𝐸𝐷𝐹𝐿2 𝑠𝑖𝑛(2𝜃𝑘) (

180
𝜋)

4𝑅𝑆
2

Size of source in the equa-
torial plane

TA

(mm)
𝐹𝑛(휀) = 𝐻𝑎𝑡𝑆ℎ𝑎𝑝𝑒, 𝑓𝑜𝑟 −

휀𝑚

2
< 휀 <

휀𝑚

2

where 휀𝑚 =
(

180

𝜋
)𝑇𝐴

𝑅𝑆

Specimen tilt; thickness of
sample surface as pro-
jected onto the equatorial
plane

ST

(mm)
𝐹𝑛(휀) = 𝐻𝑎𝑡𝑆ℎ𝑎𝑝𝑒, 𝑓𝑜𝑟 −

휀𝑚

2
< 휀 <

휀𝑚

2

Where 휀𝑚 =
(

180

𝜋
) cos(𝜃𝑘)𝑆𝑇

𝑅𝑆

Receiving slit length in the
axial plane

SL

(mm)
𝐹𝑛(휀) = (

1

휀𝑚
) (1 − √

휀𝑚

휀
)

Miscellanous 142

142 Miscellanous

𝑓𝑜𝑟 휀 = 0 𝑡𝑜 휀𝑚 = − (
90

𝜋
) (

𝑆𝐿

𝑅𝑆
)

2

cot(2𝜃𝑘)

Width of the receiving slit
in the equatorial plane

SW

(mm)
𝐹𝑛(휀) = 𝐻𝑎𝑡𝑆ℎ𝑎𝑝𝑒, 𝑓𝑜𝑟 −

휀𝑚

2
< 휀 <

휀𝑚

2

where 휀𝑚 =
(

180

𝜋
)𝑆𝑊

𝑅𝑆

Sample

Linear absorption coeffi-
cient

AB

(cm-1)
𝐹𝑛(휀) = (

1

) 𝐸𝑥𝑝 (−

휀

)

𝑓𝑜𝑟 휀 ≤ 0 and = 900 sin(2𝜃𝑘)/(𝜋 𝐴𝐵 𝑅𝑆)

17.4.2 Convolutions in general

TOPAS performs convolution in various ways and the terms “FFT convolution” (Fast Fourier
Transform) or “direct convolution” are simplifications. Typically, convolutions are broken down
into double summations that can be calculated either directly or by using an FFT. The program
uses the method that is fastest as determined by calculating the number of operations required
by each method.

Response functions that are known to the program are treated analytically. Response functions
that are unknown to the program (such as user defined convolutions) are treated as straight-line
segments. Convolution therefore can be i) between two sets of line segments ii) one set of line
segments and an analytical expression or iii) simply done analytically. For a response function
with Nr data points and a peak comprising Np points and when straight-line segments are used,
the extra cost of the piece wise integration is approximately 3 (Nr+Np) operations; this is a small
number of operations and the benefit is a high degree of accuracy. Apart from lor_fwhm and
gauss_fwhm, the convolutions described below have discontinuities in 2Th space; associated
Fourier transforms are therefore difficult to describe and hence convolution is performed in 2Th
space. Response functions that are treated as line segments are:

user_defined_convolution, capillary_diameter_mm, lpsd_th2_angular_range_degrees

Response functions that are analytically convoluted with line segments are:

exp_conv_const, hat, stacked_hats_conv

Response functions that comprise a mixture of analytical and straight-line segments are:

axial_conv, one_on_x_conv, circles_conv

lor_fwhm and gauss_fwhm convolutions are convoluted analytically with the emission profile to
form the base profile. Convolutions are calculated with an x-axis step size of:

Peak_Calculation_Step = x_calculation_step / convolution_step

For efficiency x_calculation_step should not be defined for data with equal x-axis steps; instead
rebin_with_dx_of should be used. The following response functions are calculated at smaller step
sizes without changing Peak_Calculation_Step or Nr:

Miscellanous 143

143 Miscellanous

axial_conv : Step = Peak_Calculation_Step / 2
lpsd_th2_angular_range_degrees : Step = Peak_Calculation_Step / 3
capillary_diameter_mm : Step = Peak_Calculation_Step / 1 to 3

In this manner a high degree of accuracy is maintained and Np*Nr is left unchanged. Typically, a
laboratory diffraction pattern can be accurately synthesized with a Peak_Calculation_Step of
0.02 degrees 2Th. The next step to increasing accuracy would be to increase convolution_step to
2 and so on. When direct convolution is used then convolution scales by a factor of (Nr * Np). Con-
volutions that scale by (Nr+Np) are very fast and are:

exp_conv_const, hat, stacked_hats_conv

Calculating derivatives of parameters that are a function of a convolution can be demanding.
Most convolutions however that have multiple dependent parameters require only one recalcu-
lation of the convolution; exceptions are ft_conv, WPPM_ft_conv and user_defined_convolution.
In the case of convolutions that comprise multiple convolution parameters, for example, ax-
ial_conv with its convolution parameters of primary_soller_angle etc..., then a recalculation for
each of the convolution parameters is required. The following is an overview of convolutions and
associated aberrations:

axial_conv Full Axial divergence model

one_on_x_conv Equatorial Divergence

circles_conv Simple axial model

capillary_diameter_mm Capillary sample

lpsd_th2_angular_range_degrees LPSD detector

exp_conv_const Sample penetration

hat Receiving slit width, sample tilt

stacked_hats_conv Tube tails

17.4.3 Capillary convolution for a focusing convergent beam

The capillary convolution has been extended to include a focusing convergent beam (Coelho &
Rowles, 2017); syntax is as follows:

[capillary_diameter_mm E]
capillary_u_cm_inv E
[capillary_convergent_beam] [capillary_divergent_beam] [capillary_parallel_beam]
[capillary_focal_length_mm E]
[capillary_xy_n #]

See examples LAB6-STOE.INP and LAB6-D8.INP in the directory TEST_EXAMPLES\CAPILLARY. If
using a str phase then capillary_u_cm_inv can be set to the calculated linear absorption coeffi-
cient multiplied by a packing density, for example:

Miscellanous 144

144 Miscellanous

prm packing_density 0.31208
capillary_diameter_mm @ 0.57313

capillary_u_cm_inv
= Get(mixture_MAC) Get(mixture_density_g_on_cm3) packing_density;

capillary_focal_length_mm @ 197.89657
capillary_convergent_beam

If capillary_focal_length_mm is not defined, then it defaults to the diffractometer radius Rs.

17.4.4 ft_conv

[ft_conv_re_im] …
[ft_conv_re E]
[ft_conv_im E]
[ft_min !E]
[ft_x_axis_range !E]
‘ Get(ft_0)
‘ FT_Break

Fourier Transform (FT) of a response function that is convoluted into phase peaks using a Fast
Fourier Transform (FFT); for example, to convolute a Voigt into a phase the following can be used:

ft_conv = Exp(-(Pi FT_K gfwhm)^2 / (4 Ln(2)) - Pi FT_K lfwhm);
ft_min = 1e-8; ‘ this is the default; ft_min is optional
ft_x_axis_range = 40 lfwhm;

ft_conv is equal to the two keywords [ft_conv_re_im ft_conv_re]. More than one transform can be
defined. See ft_conv and WPPM_ft_conv for details. Here the convolution theorem is used by mul-
tiplying the FT of a Gaussian by the FT of a Lorentzian. If the Fourier transforms are separately
defined, the program will internally use the convolution theorem. FT_K is a reserved parameter
name and it returns the transform k divided by the x-axis range of the peak; this range includes
ft_x_axis_range. ft_x_axis_range can be an equation that needs to be set such that the transform
decays to near zero; peak tails will otherwise be incorrect. A Lorentzian for example needs a large
ft_x_axis_range for accurate tails. ft_min defines the smallest value to which the transform is cal-
culated to. For example, an already broadened peak in x-axis space will have a relatively narrow
transform; the calculation of the transform is therefore terminated when FT(k)/FT(k=0)<ft_min.
Transform values for larger k are then set to zero. If(,,) constructs can instead be used within the
transform equation for further control; for example:

ft_conv = If (FT_K > D, FT_Break, Sphere(FT_K, D));

Here the calculation of the FT is terminated when FT_K>D using FT_Break. Get(ft_0) returns
FT(k=0) and can be used within the ft_conv equation, for example:

ft_conv = {
def a = Exp(-Pi FT_K lf);
return If(a < 1e-6 Get(ft_0), FT_Break, a);

}

Miscellanous 145

145 Miscellanous

ft_conv integrates with convolutions that are performed in direct space. It can be used within
peak stack operations and it can be a function of the reserved parameter names:

H, K, L, M, Th, Xo, D_spacing, FT_K

Multiple ft_conv (s) can be defined at either the xdd or phase level. When defined at the xdd level
the convolution is applied to all phases of that xdd. The TEST_EXAMPLES\FT directory comprises
examples that use ft_conv. For a typical Rietveld refinement, an ft_conv used to describe a Voigt
is almost as fast as the analytical equivalent as seen in example FT\ALVO4A.INP. For high accu-
racy the range of the peak, as defined with ft_x_axis_range, needs to be large, up to 400 FWHM
for a Lorentzian; in these cases, the ft_conv is considerably slower as seen in FT\VOIGT.INP.

FT\ALVO4A.INP compares the use of spherical_harmonics_hkl with and without ft_conv as fol-
lows.

prm csl 50 min 3 max = Min(Val 2 + 0.1, 10000);
prm csg 50 min 3 max = Min(Val 2 + 0.1, 10000);
prm csl_fwhm = 0.1 Rad Lam / (csl Cos(Th));
prm csg_fwhm = 0.1 Rad Lam / (csg Cos(Th));
if 1 {

‘ Spherical Harmonics
spherical_harmonics_hkl sh

sh_order 2
load sh_Cij_prm {

y00 !sh_c00 1
y20 sh_c20 0
y21p sh_c21p 0
y21m sh_c21m 0
y22p sh_c22p 0
y22m sh_c22m 0

}
existing_prm csl_fwhm *= sh;
existing_prm csg_fwhm *= sh;

}
if 0 {

‘ use analytical Lorentzian and Gaussian convolution
lor_fwhm = csl_fwhm;
gauss_fwhm = csg_fwhm;

} else {
‘ use Fourier Transform convolution
ft_conv = Exp(-(Pi FT_K csg_fwhm)^2 / (4 Ln(2)) - Pi FT_K csl_fwhm);

ft_x_axis_range = 45 csl_fwhm + 4 csg_fwhm;
}

The speed of the analytical convolution is greater not simply because describing the peak analyt-
ically is faster but because derivatives of multiple parameters for lor_fwhm (or gauss_fwhm) re-
quires only one peak calculation; whereas for ft_conv the peak is recalculated for each independ-
ent parameter that it is a function of.

17.4.4.1 ft_conv compared to user_defined_convolution

If a response function is known in x-axis space then it is often best to perform the convolution in
x-axis space rather that describing the FT of the response function using ft_conv.

Miscellanous 146

146 Miscellanous

user_defined_convolution can be used to perform convolution in x-axis space and the speed at
which it operates is as fast or faster than ft_conv depending on the x-axis range of the response
function; this is demonstrated in FT\LORENTZIAN.INP. For each peak, user_defined_convolution
estimates the computational effort required to perform the convolution eiether directly or with
an FFT and chooses the one with the least computational effort. Examples that use user_de-
fined_convolution are as follows:

FT\LORENTZIAN.INP
TOF\TOF_BANK2_2.INP
WPPM\GAMMA.INP
UDEFA.INP

UDEFA.INP shows how to convolute a function with discontinuities; i.e.

user_defined_convolution = Exp(-20 X^2); min = -.2; max = .5;

The FT for functions with such discontinuities often cannot be described analytically.

17.4.4.2 FFT versus direct summation

Typically an FFT convolution for a response function that comprise histograms is quoted as com-
prising O(N log2N) operations (Cooley–Tukey algorithm for example). Direct convolution is quoted
as comprising O(N2) operations and is only faster for N<128. However, in XRD work a direct con-
volution rather than an FFT working on real numbers is often faster for N ~< 256 to 512 as the
comparison of the O(N log2N) versus O(N2) is not strictly correct. To see why consider a response
function comprising 3 points and a peak comprising 5 points. A convolution can be pictured as
the response function R moving along the peak P as follows:

P 0 0 0 1 1 1 1 1 0 0 0
R - - x
R - x x
R x x x
R x x x
R x x x
R x x -
R x - -

In this representation each ‘x’ can be considered a multiply; in direct convolution this makes a
total of 15 multiplies (Nr*Np) and not N2 where N/2≤(Nr+Np)≤N. To perform such a convolution using
an FFT, the number of operations is approximately 4*16*log216=256 multiplies where 16 is the
closest power of 2 to Nr+Np. Of course, FFT routines typically also have special cases for small N;
nonetheless N=256 to 512 is not small and many peaks in XRD work typically comprise less points
and many of the response functions have a small Nr; these include axial divergence, equatorial
divergence, receiving slit width, capillary convolution, LPSD convolution and often sample pene-
tration. Another factor favoring direct convolution for modest Nr and Np is the fact that modern
processors such as the Intel i7 are very fast when data in cache memory are arranged sequentially
and accessed sequentially. In fact, non-sequential operations can be as much as 8 times slower
than for the sequential case.

Miscellanous 147

147 Miscellanous

17.4.5 WPPM

[WPPM_ft_conv_re_im E]...
[WPPM_ft_conv_re E]
[WPPM_ft_conv_im E]
WPPM_L_max E
WPPM_th2_range E
[WPPM_break_on_small !E]
[WPPM_correct_Is]

Examples referred to in this section reside in the TEST_EXAMPLES\WPPM directory.
WPPM_ft_conv is equal to [WPPM_ft_conv_re_im WPPM_ft_conv_re].

17.4.5.1 WPPM in 2Th space

The WPPM microstructure analysis (Scardi & Leoni, 2001; Leoni et al. 2004; David et al. 2010) for
domains comprising spheres and a gamma distribution can be implemented using user_de-
fined_convolution operating in 2Th space as shown in GAMMA.INP.

17.4.5.2 WPPM using fit_obj(s)

For cases where microstructure broadening is far greater than instrument/emission profile
broadening then fit_obj’s can be used to describe the peak shape (see GAMMA-FIT-OBJ.INP and
SPHERE-FIT-OBJ.INP), for example:

 fn gamma_mu_variance(mu, v, xo) {
 def s = 2 (Sin(X Pi/360) - Sin(xo Pi/360)) / lam;
 def p0 = Pi s mu;
 def p = If(Abs(p0) < 1e-10, 1, p0);
 def q = 2 p / v;
 return mu v / p^4
 (
 2 p^2 / (2 + v) + (v/(2+ 3 v + v^2)) (1 - (1 + q^2)^(-.5 v)
 Cos(v ArcTan(q)) - 2 p (1 + q^2)^(-.5 (v+1)) Sin((1 + v)
 ArcTan(q)))
);
 }

Example SUPER-LORENTZIAN.INP is useful for asking the question; can spheres with a gamma
distribution describe a 1/(1+x^2)^m type function? Example COMPARE-1.INP is useful for asking the
question; can a Voigt fit to a particular case of spheres with a gamma distribution?

17.4.5.3 WPPM using WPPM_ft_conv

WPPM_ft_conv describes a FT in s space and performs a convolution on phase peaks that have
been interpolated to s space, for example:

Miscellanous 148

148 Miscellanous

WPPM_ft_conv = 1 - 1.5 WPPM_L / D + 0.5 (WPPM_L / D)^3;
WPPM_L_max = D;
WPPM_th2_range = 25 .1 Rad Lam / (D Cos(Th));
WPPM_break_on_small 1e-7
WPPM_correct_Is

The result is then interpolated back to 2Th space. Interpolations are scaled such that
I(s)ds = I()d when WPPM_correct_Is is defined; the effects of this scaling is typically small at low
angles and becomes noticeable at very high angles reaching a maximum at 180 degrees 2Th
where the derivative of Cos(Th) is at a maximum.

When multiple WPPM_ft_conv(s) are defined then the program will internally use the convolution
theorem.

WPPL_L is a reserved parameter name that returns the transform parameter.

WPPM_L_max defines the maximum WPPL_L.

Get(ft_0) and FT_Break can both be used in WPPM_ft_conv in a manner similar-to ft_conv.

The calculation of the Fourier transform is terminated when WPPM_ft_conv_re is less than

WPPM_break_on_small multiplied by the value of WPPM_ft_conv_re evaluated at WPPM_L = 0. If

WPPM_break_on_small is not defined then no check is made to terminate the transform.

The tails of WPPM peaks extend for almost the whole diffraction pattern; they can be shortened
using WPPM_th2_range; in the above example this range has been written in terms of the fwhm
as defined in the Scherrer equation. WPPM_ft_conv can be a function of the following reserved
parameter names:

H, K, L, M, Th, Xo, D_spacing, WPPM_L

Example S-SPHERE-1.INP uses WPPM_ft_conv to fit to a synthesized WPPM generated peak with
identical results. Example CUBE-LN-NORMAL-1.INP can be used to test these macros. Lattice pa-
rameters appearing within the macros are made constant using Constant; these convolutions are
therefore made independent of lattice parameter changes and hence separate convolutions are
not initiated whilst calculating lattice parameter derivatives.

WPPM_Ln_k is a reserved parameter name that returns Ln of an integer and is used to calculate
Ln(Kc WPPM_L) in a fast manner.

The example LN-NORMAL-1.INP can be used for visualizing a Ln normal distribution. It uses the
Ln_Normal_x_at_CD function to determine the limit of the distribution.

17.4.6 Microstructure convolutions

The Double-Voigt approach (e.g. Balzar, 1999) is supported for modeling microstructure effects.
Crystallite size and strain comprise Lorentzian and Gaussian component convolutions varying in
2 as a function of 1/cos() and tan() respectively.

Miscellanous 149

149 Miscellanous

17.4.6.1 Preliminary equations

The following preliminary equations are based on the unit area Gaussian, GUA(x), Lorentzian,
LUA(x), and pseudo-Voigt PVUA(x) functions as given in Table 5-2.

Height of GUA(x) and LUA(x) respectively:

GUAH = GUA(x=0) = g1 / fwhm

LUAH = LUA(x=0) = l1 / fwhm

Gaussian and Lorentzian respectively with area A:

G(x) = A GUA(x)

L(x) = A LUA(x)

Height of G(x) and L(x) respectively:

GH = A GUA

LH = A LUAH

Integral breadth of Gaussian and Lorentzian respectively:

G = A / GH = 1 / GUAH = fwhm / g1

L = A / LH = 1 / LUAH = fwhm / l1

Unit area Pseudo Voigt, PVUA:

PVUAH = LUAH + (1-) GUAH

PV = 1 / PVUAH

A Voigt is the result of a Gaussian convoluted by a Lorentzian:

V = G(fwhmG) L(fwhmL)

where "" denotes convolution and fwhmG and fwhmL are the FWHM of the Gaussian and Lo-
rentzian components. A Voigt can be approximated using a Pseudo Voigt. This is done numerically
where:

V(x) = G(fwhmG) L(fwhmL) = PVUA(x, fwhmPV)

By changing units to s (Å-1):

s = 1/d = 2 sin() /

and differentiating and approximating ds/d = s / we get:

s = (2 cos() /)

thus:

fwhm(s) = fwhm(2) cos() /

IB(s) = IB(2) cos() /

Miscellanous 150

150 Miscellanous

17.4.6.2 Crystallite size and strain

Crystallite Size: Gaussian and Lorentzian component convolutions are:

fwhm(2) of Gaussian = (180/) / (cos() CS_G)

fwhm(2) of Lorentzian= (180/) / (cos() CS_L)

(2) of Gaussian = (180/) / (cos() CS_G g1)

(2) of Lorentzian = (180/) / (cos() CS_L l1)

or, according to Balzar (1999), in terms of s, GS and CS:

fwhm(s) of Gaussian = (180/) / CS_G

fwhm(s) of Lorentzian = (180/) / CS_L

GS(s) =(s) of Gaussian = (180/) / (CS_G g1)

CS(s) =(s) of Lorentzian = (180/) / (CS_L l1)

The macros CS_L and CS_G are used for calculating the CS_L and CS_G parameters respectively.
Determination of the volume weighted mean column height LVol, LVol-IB and LVol-FWHM is as
follows:

LVol-IB = k / Voigt_Integral_Breadth_GL (1/CS_G, 1/CS_L)

LVol-FWHM = k / Voigt_FWHM(1/CS_G, 1/CS_L)

The macro LVol_FWHM_CS_G_L is used for calculating LVol-IB and LVol-FWHM.

Strain: Strain_G and Strain_L parameters corresponds to the fwhm(2) of a Gaussian and a Lo-
rentzian that is convoluted into the peak, or,

fwhm(2) of Gaussian = Strain_G tan()

fwhm(2) of Lorentzian= Strain_L tan()

(2) of Gaussian = Strain_G tan() / g1

(2) of Lorentzian = Strain_L tan() / l1

or, according to Balzar (1999), in terms of s, CD and GD:

fwhm(s) of Gaussian = Strain_G sin() / = Strain_G s / 2

fwhm(s) of Lorentzian = Strain_L sin() / = Strain_L s / 2

GD(s)/s0 s = (s) of Gaussian = (Strain_G / g1) s / 2

CD(s)/s0 s = (s) of Lorentzian = (Strain_L / l1) s / 2

The macros Strain_L and Strain_G are used for calculating the Strain_L and Strain_G parameters
respectively. From these equations we get:

GD(s) = s0 Strain_G / (2 g1)

CD(s) = s0 Strain_L / (2 l1)

According to Balzar (1999), equation (34):

e = D(2) / (4 tan())

Miscellanous 151

151 Miscellanous

where D(2) is the fwhm of a Voigt comprising a Gaussian with a fwhm = Strain_G Tan() and a
Lorentzian with a fwhm = Strain_L Tan(). The value for e0 is given by:

4 e0 Tan() = FWHM of the Voigt from Strain_L and Strain_G

 = Voigt_FWHM(Strain_L, Strain_G) Tan()

or,

e0 = Voigt_FWHM(Strain_L, Strain_G) (/ 360) / 4

The macro e0_from_Strain calculates e0 using the equation function Voigt_FWHM_GL.

17.5 ... Loading of INP files

17.5.1 if {} else if {} else {}

 ‘if’ operates during the loading of pre-processed INP files, syntax is as follows (see TEST_EXAM-
PLES\ZRO2.INP):

if expression {
} else if expression {
} else expression {
}

expression can be any valid TOPAS equation without the semicolon; in addition, expression can
contain the functions Prm_There(prm_name) and Obj_There(obj_name). The following is equiva-
lent to a /* */ block comment:

if 0 {
...

}

A more complex construct could look something like:

xdd
 local aaa 1
 str ...
 local aaa 2
 str ...
 local aaa 3
 hkl_Is
 if Prm_There(aaa) {
 Out(aaa, "\nThis is the aaa at the xdd level %-1.6f")
 if aaa == 2 {

Out_String("\nNot written to file as aaa at the xdd level is 1")
 }
 } else if Obj_There(hkl_Is) {
 Out_String("\nYes this is a hkl_Is phase")
 } else {
 Out_String("\naaa is not there and this is not a hkl_Is phase")
 }
for xdds {

if And(Obj_There(neutron), Obj_There(pk_xo)) {
‘ Neutron TOF

Miscellanous 152

152 Miscellanous

} }

17.6 ... Functions – fn, def, return, noinline

Functions can be defined using fn; here’s an example of a recursive function:

fn factorial(x) { return If(x == 1, 1, x factorial(x-1)); }
prm = factorial(5); : 120

There’s also the simple form where the return statement is implied:

fn factorial(x) = If(x == 1, 1, x factorial(x-1));

The equation part of prm objects can have a function body (see the macro Robust_Refinement in
TOPAS.INC), for example:

prm = { def a = 2; return a; }

Most importantly, functions can reference parameters defined using prm; this simplifies the writ-
ing of prm equations and additionally memory usage can be greatly reduced when noinline is used.
Equations called def objects can be used and defined within non-simple functions. Here’s an ex-
ample:

fn gauss(a, x, f, g) {
def a1 = 2 Sqrt(Ln(2) / Pi) / f;
def a2 = 4 Ln(2);
def a3 = (x / f);
return a1 Exp(-a2 a3^2);

}

A def object must be defined prior to its use. They can be assigned to other def objects but not to
objects of prm type. In other words, prm objects are write-protected within functions. The argu-
ments to functions can be def or prm objects. c-style braces can be used to scope variables; the
following will throw an exception due to the attempted use of an uninitialized def object:

fn foo(x) { def a; { def a = x; } return a; }
prm = foo(3); : 0 ‘ Exception thrown

The following will not throw an exception as the simplification routines recognizes ‘0’:

Fn a(x) = x undefined_name 0; prm = a(3); : 0

Functions can be nested; for example:

fn foo() {

def a, b;
a = 3; b = 2;
fn nested(x, y) { return Sqrt(x^2 + y^2); }
return nested(a, b);

}
prm = foo(); : 3.60555

Miscellanous 153

153 Miscellanous

def and prm objects have scope which determines the actual object used.

Here def ‘a’ is returned:

fn a(a) { def a = 2; return a; } prm = a(1) : 2

Here prm ‘a’ is returned:

prm a = 2; fn a() = a; prm = a(); : 2

Here the argument ‘a’ is returned:

prm a = 2; fn a(a) = a; prm = a(3); : 3

Function specifics:

• fn's are a kernel operation and not a pre-processor operation.

• fn's must be defined prior to their use.

• fn arguments are optional but parentheses must be used.

• a fn cannot be defined with a name of a previously defined fn name.

• fn's are inlined by default.

• Non-nested fn’s can be prevented from being inlined with the noinline prefix.

• nested functions cannot be prefixed with noinline.

Use of noinline can often be slower than not using noinline; this is because a stack mechanism is
used for the fn arguments, additionally the global simplification routines cannot simplify what’s
inside a noinline function. Functions are therefore ‘inlined’ (the word ‘expand’ is sometimes used)
by default. A macro can be considered an inlined function and there’s no difference in the how
the following is finally processed:

fn my_max(a, b, c) = Max(a, b, c);
macro & my_max(& a, & b, & c) { Max(a, b, c) }

The macro, by definition, is inlined in the pre-processed INP file. In the case of fn, the program
will inline ‘my_max’. Prefixing fn with noinline prevents inlining, for example:

noinline fn gauss(x, f)=(2 Sqrt(Ln(2)/Pi)/f) Exp(-4 Ln(2)((X-x)/f)^2);

Its best to inline small functions as it gives the simplification routines a chance to simplify what’s
inside the function with regards to its surroundings. Consider the following:

noinline fn a(b, c) = b^2 + c^2;
prm p1 1
prm !p2 1
prm p3 1
prm !p4 1
prm p5 = a(p1, p2) + a(p3, p4); : 0

Miscellanous 154

154 Miscellanous

Without inlining, the simplification routines won’t see that p2 and p4 are constants inside the ‘a’
function and hence no simplification is performed; the ‘a’ function will be called twice, and the
stack used twice. Note, stack here refers to the computer algebra stack. With inlining, p5 after
simplification reduces to:

prm p5 = p1^2 + p3^2 + 2; : 0

In the case of large functions, not inlining may increase performance as the signaling of equation
nodes for recalculation will be reduced. Inlined functions have scope allowing the use of the
Get(…) function, for example:

fn lat(h, k, l) = h Get(a) + k Get(b) + l Get(c);
str ...

lor_fwhm = lat(H, K, L) - lat(-H, -K, -L);

17.6.1 Subject independent single crystal refinement

The example \FUNCTIONS\ALVO4-FN.INP performs a single crystal refinement using computer al-
gebra. No subject dependent keywords are used and instead only the following six keywords are
used:

fn, noinline, def, return, prm, restraint

The speed of ALVO4-FN.INP is 7.4 times slower than the comparable subject dependent equiva-
lent of ALVO4-NORMAL.INP. Much of the difference in speed is in the calculation of the Cosines
necessary for the structure factors. Importantly convergence and the behavior of the parameters
are similar. The placement of noinline is important. Also used is out_refinement_stats which out-
puts the following:

First pass equation statistics excluding attribute equations
 Number of equations : 534
 Number of nodes : 99751
 Number of nodes if expanded : 12070283

Number of penalties/restraints: 532
Number of independent penalty/restraints parameters: 58
Number of penalties/restraints: 532
Number of independent penalty/restraints parameters: 58

Time 0.13
Second pass equation statistics excluding attribute equations
 Before/After equation simplification
 Number of equations : 549 553
 Number of nodes : 99766 8354
 Number of nodes if expanded : 12070298 228183
Number of objects taking part in refinement: 73
Number of dependent parameters with derivatives wrt to Ycalc: 15

The ALVO4-FN.INP demonstrates the ease at which an entire single crystal refinement can be per-
formed; it should allow for user defined temperature factors etc.

Miscellanous 155

155 Miscellanous

17.6.2 Computer algebra and out_refinement_stats

The computer algebra system CAS in version 5 (Coelho et al., 2011) is around 2 to 4 times faster
than version 4; compare with running ROSENBROCK-10.INP or PVS.INP. The CAS has been re-
worked and it now operates on a global level where equations are simplified across all objects.
The out_refinement_stats keywords, for SERINE_I_EVANS_N_TA_BANG_ROT.INP for example, out-
puts the following equation statistics:

Second pass equation statistics excluding attribute equations
 Before/After equation simplification
 Number of equations : 2707 3085
 Number of nodes : 22941 16671
 Number of nodes if expanded : 1706390373 1070170132

Number of objects taking part in refinement: 2595
Number of dependent parameters with derivatives wrt to Ycalc: 2319

17.7 ... CIF

The following macros and Get’s can be used to output data in CIF format:

Out_CIF_STR(file)
Out_CIF_ADPs(file)
Out_CIF_STR(file, with_id)
Out_CIF_Bonds_Angles(file)
Get(number_of_parameters)
Get(refine_ls_shift_on_su_max)
Get(weighting)
Xi = a reserved parameter name

_refine_ls_shift / su_max can be accessed using Get(refine_ls_shift_on_su_max) when do_errors
is defined and when continue_after_convergence is NOT defined. A message similar-to the fol-
lowing is displayed on calculation:

refine_ls_shift_on_su_max 0.409610469 corresponds to parameter m501b939c_3 of object
prm_10

Get(weighting) and Xi can be used as follows:

 xdd_out file append load out_record out_fmt out_eqn {
 " %9.0f" = Xi;
 " %11.5f" = X;
 " %11.5f" = Ycalc;
 " %11.5f" = Yobs;
 " %11.5f\n" = Get(weighting);
 }

Get(weighting) returns weighting as defined by the User; if weighting is not defined then the fol-
lowing is returned:

1 / Max(1, Yobs), if SigmaYobs does not exist

1 / SigmaYobs^2, if SigmaYobs does exist

Miscellanous 156

156 Miscellanous

Get(weighting) returns zero for x-axis regions that are excluded using exclude. If weighting is a
function of Ycalc etc... then it returns the last weighting calculated depending on re-
cal_weighting_on_iter.

17.8 ... Large refinements with tens of 1000s of parameters

Refinements comprising many parameters and data points can be both slow and memory inten-
sive. Computational speed can be hindered by the A matrix dot products of Eq. (4-4). In the case
of dense matrices, memory usage in forming the full A matrix can be prohibitive. The following
keywords can be used to overcome these problems:

conserve_memory
bootstrap_errors 100
approximate_A

A_matrix_memory_allowed_in_Mbytes 100
A_matrix_elements_tollerance 0.00001

approximate_A avoids the calculation of the A matrix dot products; more refinement iterations
are typically required for convergence but in most large problems the time to convergence is
greatly decreased (see for example AE14-APPROX-A.INP). Furthermore, memory usage of the A
matrix can be limited using A_matrix_memory_allowed_in_Mbytes; this produces a sparse matrix,
depending on allotted memory, by removing small Aij values. Typically, the calculation of the co-
variance matrix is impractical and hence errors can instead be determined using the bootstrap
method.

17.9 ... Laue refinement

Single crystal Laue diffraction data can be refined; data files have the extension *.HKL-LAM; see
directory TEST_EXAMPLES\LAUE. Laue_Lam is a reserved parameter name that can be used in
hkl type equations; it returns the reflection dependent wavelength. The merging of equivalent
reflections and Friedel_pairs are not allowed with Laue refinement; the following keywords are
internally defined with Laue refinement:

dont_merge_equivalent_reflections
dont_merge_Friedel_pairs

and the following messages reported:

Equivalent reflections not merged
Friedel pairs not merged

17.10 . Learnt Shapes for Background or Otherwise

[xdd]...
[user_y $name { #include $file }]... | [user_y $name $file]...

[1xye_format]
[1rebin_with_dx_of !E]
[1user_y_hat E] …
[1user_y_gauss_fwhm E] …

Miscellanous 157

157 Miscellanous

[1user_y_lor_fwhm E] …
[1user_y_exp_conv_const E [user_y_exp_limit E]…

1New user_y dependents. user_y_hat, user_y_gauss_fwhm, user_y_lor_fwhm and
user_y_exp_conv_const are identical to the hat, gauss_fwhm and lor_fwhm and exp_conv_const
convolutions except they are applied to the user_y data.

user_y can be used to add, multiply and in general manipulate data files of different x-axis steps.
For example, to add two data files, square the result and then multiply by the x-axis reserved pa-
rameter X, the following can be used:

user_y f1 file1.xy
user_y f2 file2.xy
yobs_eqn result.sst = X (f1 + f2)^2; min 10 max 100 del 0.01

The test example USER_Y\USER_Y.INP fits five fit objects to the quartz triplet using a learnt peak
shape defined using user_y; the fit with the individual fit_obj’s displayed (using the macro
Plot_Fit_Obj) looks like:

The test example USER_Y\USER_Y_CONVOLUTION.INP fits five fit objects to a simulated pattern
using a learnt peak shape defined using user_y with the two user_y convolutions of
user_y_exp_conv_const and user_y_gauss_fwhm; the INP file looks like:

'#define CREATE_SIMULATED_
continue_after_convergence

macro FO_Peak(& p, & pe, & a, & x, & s)
 {
 fit_obj = a p;

2Th Degrees

68

C
o

u
n

ts

17,000

16,000

15,000

14,000

13,000

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

-1,000

user_y 1 0.00 %

user_y 2 0.00 %

user_y 3 0.00 %

user_y 4 0.00 %

user_y 5 0.00 %

Miscellanous 158

158 Miscellanous

 min_X = -pe s + x; max_X = pe s + x;
 fo_transform_X = (X - x) / s;
 }

prm !peak_extent 2

#ifdef CREATE_SIMULATED_
 iters 0
 user_y peak { _xy -0.01 0 0 100 0.01 0 }
 user_y_exp_conv_const @ 1 min 0.5 max 2
 user_y_gauss_fwhm @ 0.1 min 0.1 max 2
 yobs_eqn = 1; min 66 max 70 del 0.01
 gui_ignore ‘ don’t load data file into GUI
 Out_X_Ycalc(user_y_convolution.xy)
#else
 ' Fit to the simulated peak
 user_y peak { _xy -0.01 0 0 100 0.01 0 }
 user_y_exp_conv_const @ 1 min 0.5 max 2 val_on_continue = Rand(0.5, 2);
 user_y_gauss_fwhm @ 0.1 min 0.1 max 1 val_on_continue = Rand(0.1, 1);
 xdd user_y_convolution.xy
#endif
 start_X 66
 finish_X 70
 bkg @ 100
 prm a1 1000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a2 2000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a3 3000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a4 2000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a5 1500 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm x1 67.7 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x2 67.9 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x3 68.1 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x4 68.3 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x5 68.5 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm s1 0.7 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s2 0.9 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s3 1.1 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s4 1.0 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s5 0.8 val_on_continue = Rand(0.5, 2); min 0.5 max 2

 FO_Peak(peak, peak_extent, a1, x1, s1) Plot_Fit_Obj("user_y 1")
 FO_Peak(peak, peak_extent, a2, x2, s2) Plot_Fit_Obj("user_y 2")
 FO_Peak(peak, peak_extent, a3, x3, s3) Plot_Fit_Obj("user_y 3")
 FO_Peak(peak, peak_extent, a4, x4, s4) Plot_Fit_Obj("user_y 4")
 FO_Peak(peak, peak_extent, a5, x5, s5) Plot_Fit_Obj("user_y 5")

fo_transform_X is a dependent of fit_obj and it can be used to transform X used within the fit_obj.
This is useful for cases where the user_y x-axis is different to the Yobs x-axis. The user_y NAME
{...} usage allow shapes to be typed directly into the INP file using the _x1_dx tag. A triangle for
example is formulated as follows:

user_y NAME {
_x1_dx -1 1 /* start and step */
0 1 0 /* the shape data */

}

Miscellanous 159

159 Miscellanous

Multiple user_y(s) can be defined and each can be used any number of times in equations that can
be a function of X. The test example USER_Y.INP loads a single shape and stretches and scales it
five different ways onto a diffraction pattern to fit the Quartz triplet. Convergence is as fast as
with any other refinement.

17.11 . Emission Profile with Absorption Edges

[modify_peak]
[modify_peak_apply_before_convolutions]
[modify_peak_eqn !E] ‘ Can be a fn of Get(current_peak) & Get(current_peak_x)

[current_peak_min_x !E]
[current_peak_max_x !E]

modify_peak can be used to modify peak profiles either before convolutions or after. Functional-
ity is realized by using the internal data objects of Get(current_peak_x) and Get(current_peak);
these two objects return the x-axis wavelength being processed and the current calculated peak
intensity respectively. Here are plots from AL2O3-PAM.INP and SPINNEL-PAM.INP (see directory
TEST_EXAMPLES\ABSORPTION-EDGE) that has an identical absorption edge modelled for both
Al2O3 and Spinnel samples:

17.12 . scale_phase_X keyword

[scale_phase_X E]...

Scales Ycalc point by point. It can be used, for example, to define Lorentz Polarization factors on
an x-axis basis rather than on a peak basis as is the case for scale_pks. Some main points for
scale_phase_X:

• Can be a function of X

• Multiple definitions allowed, and each applied to the pattern.

• Can occur at the xdd or phase level.

2Th Degrees

60555045403530252015105

S
q

rt
(C

o
u

n
ts

)

90

80

70

60

50

40

30

20

10

0

Corundum Al2O3 100.00 %

LiMn2O4 100.00 %

Miscellanous 160

160 Miscellanous

Here’s an example:

xdd ...
scale_phase_X ...
str scale_phase_X ...
hkl_Is scale_phase_X ...

The first str is multiplied by the first and second scale_phase_X; the hkl_Is phase is multiplied by
the first and third scale_phase_X.

17.13 . Refining on f0, f’ and f”

[f0_f1_f11_atom]...
[f0 E] [f1 E] [f11 E]

Examples

\TEST_EXAMPLES\F0-F1-F11\
XRAY-POWDER.INP
TOF.INP

User defined atomic scattering factors, parameter f0, and anomalous dispersion coefficients,
parameters f1 and f11. Example usage:

report_on_str
load f0_f1_f11_atom f1 f11 {

Ba @ -0.160127754 2.3954287
Ge 0.184162081 1.86162161

}

High correlations exist between f1, f11, scale and beq parameters. f0_f1_f11_atom can be used at
the str, xdd and global levels. f1 and f11 can be defined and refined independently. Defaults are
used when either f1 or f11 are not defined. The examples XRAY-POWDER.INP and TOF.INP demon-
strates the use of f0, f1 and f11. The f0 parameter can be a function of the reserved parameter

D_spacing; for example:

prm a1 25 min -50 max 50
load f0_f1_f11_atom f0 f11 {

Pb+2
= a1 Exp(1.058874 (-0.25) / D_spacing^2) +
 16.496822 Exp(0.106305 (-0.25) / D_spacing^2) +
 19.984501 Exp(6.708123 (-0.25) / D_spacing^2) +
 6.813923 Exp(24.395554 (-0.25) / D_spacing^2) +
 5.233910 Exp(1.058874 (-0.25) / D_spacing^2) +
 4.065623; ‘ this is f0 for Pb
 @ 5 ‘ this is f11 for Pb

}

For X-ray data f0 is by default obtained from the file ATMSCAT.CPP. For neutron data f0 corre-
sponds to the neutron scattering length; default scattering lengths are from the NEUTSCAT.CPP

file. Neutron scattering lengths can be refined, see example TOF.INP. no_f11 instructs the program
to ignore f11. This increases speed with little change in Ycalc. report_on_str reports on f1 and f11,
or neutron scattering lengths, actually used. No values are reported when

Miscellanous 161

161 Miscellanous

d_spacing_to_energy_in_eV_for_f1_f11 is used. To disable the effects of f0, f1 and f11, for say
CeO2, then the following could be used:

load f0_f1_f11_atom f0 f1 f11 {
Ce+4 1 0 0
O-2 1 0 0

}

17.13.1 Using a user defined table to input f0 values via user_y

Atomic scattering factors f0 can be defined in a *.XY file and used via the user_y keyword as fol-
lows:

xdd …
user_y C_f0_table C_f0_table.xy
str

load f0_f1_f11_atom f0 f1 f11 { C = C_f0_table; 0 0 }
…

Here the C_F0_TABLE.XY file comprises D_spacing and f0 value pairs which is used to describe f0
values for the C atoms withing the structure. In the above example, f1 and f11 are set to zero.

17.14 . Invalid f1 and f11

The following message is displayed when there are no valid entries for f’ and f” in the correspond-
ing NFF file:

Invalid f1 and f11 for O in file ...\ssf\o.nff
for the wavelength 0.399826.
Setting value(s) to zero

In such cases the user may choose to manually define f’ and f’’ using f1 and f11 respectively. Also
useful is to view f’ and f’’ NFF files found in the ssf directory using the GUI Tools menu:

17.15 . Isotopes and Atom Names

ISOTOPES.TXT is used for obtaining isotope weights. It’s possible to have the following when re-
fining either neutron (i.e. neutron_data is defined) or x-ray data and to obtain the correct results
without changing the INP str:

site ... occ Mg ...

Miscellanous 162

162 Miscellanous

site ... occ Mg+2 ...
site ... occ 24Mg ...
site ... occ 26Mg ...
site ... occ 26Mg+2 ...

In the cases of ‘Mg’ and ‘Mg+2’ the atomic weight used is the ‘Standard Weight’ as defined in ISO-
TOPES.TXT. In the cases of ‘26Mg’ and ‘26Mg+2’ the atomic weight used is the isotope weight as
defined in ISOTOPES.TXT. Note the ‘+2’ is dropped when searching that file. The atomic weight for
24Mg is not the same as that for Mg. When 24Mg is used then the isotope weight for 24Mg is used.
When Mg is defined then the standard weight is used. The standard weight corresponds to the
mean weight of the naturally occurring Mg isotopes.

In the case of x-rays:

• atomic scattering factors used (from file ATMSCAT.CPP) for 26Mg and 26Mg+2 corresponds to
those of Mg or Mg+2 respectively. Numbers occurring at the start of the symbol are dropped
when searching ATMSCAT.CPP.

• f’ and f’’ corrections (files in SSF directory) corresponds to that for Mg. In other words, the
numbers occurring at the start of the symbol as well as the charge (i.e. ‘+2’ in this case) is
dropped.

In the case of neutrons:

• scattering lengths used are from the NEUTSCAT.CPP file; the charge (i.e. ‘+2’) is dropped when
searching NEUTSCAT.CPP.

Internally the program converts ‘D’ and ‘T’ to ‘2H’ and ‘3H’ respectively.

17.16 . Atomic data files and associated sources

Table 17-2. Files read when atomic data is sought. The references refer to the source of the
data. In many cases the format of the data file corresponds to the original source format.

ANOMDISP.CPP : f’ and f’’ for Laboratory X-ray tubes. File is read if there are no associated
SSF*.NFF file or if use_tube_dispersion_coefficients is defined.

ATMSCAT.CPP : f0 or Elastic Photon-Atom Scattering, relativistic form factors; data from
http://www.esrf.fr/computing/expg/subgroups/theory/DABAX/dabax.html

ATOM_COLORS.DEF : Red, Green, Blue (RGB) CPK atom colors from

http://www.bio.cmu.edu/Courses/BiochemMols/Periodic/ElemList.htm. Used for as-
signing colors to atoms when displaying in OpenGL.

ATOM_RADIUS.DEF : Atomic radii and Covalent radii from

http://www.esrf.fr/cgi-bin/periodic.

ISOTOPES.TXT : Atomic Weights and Isotopic Compositions for All Elements from

http://physics.nist.gov/PhysRefData/Compositions/

http://www.esrf.fr/computing/expg/subgroups/theory/DABAX/dabax.html
http://www.bio.cmu.edu/Courses/BiochemMols/Periodic/ElemList.htm
http://www.esrf.fr/cgi-bin/periodic
http://physics.nist.gov/PhysRefData/Compositions/

Miscellanous 163

163 Miscellanous

MAGDATA.DAT : Data from GSAS data file via the International tables. Data correction for V en-
try made by Robert Von Dreele.

NEUTSCAT.CPP : Neutron scattering lengths from http://www.ccp14.ac.uk/ccp/web-mir-
rors/neutrons/n-scatter/n-lengths/LIST~1.HTM

NO_POLYHEDRA.DEF : Disables drawing of polyhedral for atoms listed.

SSF*.NFF : Anomalous scattering factors f’ and f’’ for a range of wavelengths from

http://www-cxro.lbl.gov/optical_constants/asf.html

The present data is in three columns “E(eV),f1,f2” where f'=f1–Z and f''= f2 and the conver-

sion from wavelength to energy scale is:

E(eV)=10^5/(8.065541*Lambda(Ang)).

MAC\ZNN.HTML : X-Ray Mass Attenuation Coefficients from

http://www.nist.gov/pml/data/xraycoef/index.cfm

17.17 . Removing Phases during a refinement

[remove_phase !E]

Allows for phase removal during refinement, see TEST_EXAMPLES\REMOVE-PHASE.INP which
uses the Remove_Phase macro. Typical use is:

for strs {
Remove_Phase(0.3, 0.5)

}

Here a phase is removed if its weight percent is below 0.3% and if the error in the weight percent
is greater than 0.5 times the weight percent. The phase removal process is executed at the end
of a Cycle. Text similar-to the following is displayed on removal of a phase:

*** Deleting phase: Corundum ***
*** Deleting phase: Zincite ***
 etc...

Refinement is terminated when no phases are removed during a Cycle.

17.18 . Numerical Lorentzian and Gaussian Convolutions

For fundamental and pseudo-Voigt peak types, Lorentzian and Gaussian convolutions are per-
formed analytically during the calculation of the emission profile Voigt. Therefore, lor_fwhm and
gauss_fwhm are still calculated at the emission profile level even when defined between
push_peak and add_pop_1st_2nd_peak keywords.

17.19 . Space groups, hkls and symmetry operators

[space_group $symbol]

http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM
http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM
http://wwwcxro.lbl.gov/optical_constants/asf.html
http://www.nist.gov/pml/data/xraycoef/index.cfm

Miscellanous 164

164 Miscellanous

Used to define the space group where $symbol can be any space group symbol (case insensitive)
occurring in the file SGCOM5.CPP, it can also be a space group number; here are some examples:

space_group "I a -3"
space_group ia-3
space_group P_63_M_C
space_group I_41/A_M_D
space_group I_41/A_M_D:2 ‘ defines second setting of I_41/A_M_D
space_group 206
space_group 222:2 ‘ defines second setting of 222

Symmetry operators are generated by SGCOM6.EXE and placed into a SG*.SG file with a name
similar-to the name of the space group. Space group details for space groups with names con-
taining the characters ‘/’ or ‘:’ are placed in files with file names similar-to the space group but
with the characters replaced by ‘o’ and ‘q’ respectively. The reason for this is that file names con-
taining these characters are not allowed on some operating systems. hkl generation uses infor-
mation in the *.sg file.

17.19.1 User defined rotational matrices

Space group generator - User defined rotational matrices can be added to the file SGROTS3.CPP
found in the main TA directory.

17.20 . Site identifying strings

Keywords such as operate_on_points use a site identifying string which can contain the wild card
character ‘*’ and a negation character ‘!’. The wild card character ‘*’ used in “O*” means that sites
with names starting with ‘O’ are considered. In addition to using the wild card character, site
names can be written explicitly within double quotation marks. Table 17-3 shows some oper-
ate_on_points strings and the corresponding sites identified.

Table 17-3. Example operate_on_points strings and corresponding sites identified.

str
 site Pb1 ...
 site S1 ...
 site O1 ...
 site O2 ...
 site O31 ...
 site O32 ...
 site O4 ...

$sites Sites identified

* Pb1, S1, O1, O2, O31, O32, O4

Pb* Pb1

“Pb1 S*” Pb1, S1

O* O1, O2, O31, O32, O4

“O* !O3*” O1, O2, O4

“O* !O1 !O2” O31, O32, O4

17.21 . Occupancies and symmetry operators

Only unique positions are generated from symmetry operators. Fully occupied sites therefore re-
quire site occupancy values of 1. A comparison of atomic positions is performed in the generation
of the unique positions with a tolerance in fractional coordinates of 10-15. It is therefore necessary
to enter fractions in the form of equations when entering fractional atomic coordinates that have
recurring values such as 0.33333..., 0.66666... etc., for example:

Miscellanous 165

165 Miscellanous

use: x = 1/3; y = 1/3; z = 2/3;

instead of: x 0.33333 y 0.33333 z 0.66666

17.22 . Pawley and Le Bail extraction

[lebail #]

For Le Bail intensity extraction (see example LEBAIL1.INP) use the input segment:

hkl_Is space_group p-1 lebail 1 ...

For Pawley intensity extraction (see example PAWLEY1.INP) use the input segment:

hkl_Is space_group p-1 ...

hkls are generated in the absence of hkl_m_d_th2 keywords. After refinement, the details for the
generated hkl’s are appended after space_group. For the Pawley method, once the hkl details are
generated, parameter equations can be applied to the I parameters as usual.

17.23 . Anisotropic refinement models

Keywords that can be a function of H, K, L and M, as shown in Table 2-3, allow for the refinement
of anisotropic models including preferred orientation, and peak broadening. An important con-
sideration when dealing with hkls in equations is whether to work with hkls or whether to work
with their multiplicities. The Multiplicities_Sum macro can be used when working with multiplici-
ties, for example:

prm a 0 th2_offset = Multiplicities_Sum(If(Mod(L, 2) == 0, a Tan(Th), 0));

L here corresponds to the L's of the multiplicities. Note, the preferred orientation macro PO uses
the Multiplicities_Sum macro and Spherical Harmonics uses the hkls in the *.hkl file only. A com-
pletely different viewpoint than to refine on half widths is to consider the distribution of lattice
metric parameters within a sample. Each crystallite is regarded as having its own lattice parame-
ters, with a multi-dimensional distribution throughout the powder sample. This can be achieved
by adding the same structure several times to the input file.

17.23.1 Spherical harmonics

spherical_harmonics_hkl can be applied to both peak shapes, for anisotropy, and intensities for a
preferred orientation correction. Preferred orientation can be described using the PO_Spheri-
cal_Harmonics(sh, order) macro, where "sh" is the parameter name and "order" the order of the
spherical harmonics. scale_pks is used to correct peak intensities as follows:

Miscellanous 166

166 Miscellanous

macro PO_Spherical_Harmonics(sh, order) {
 spherical_harmonics_hkl sh
 sh_order order
 scale_pks = sh;
}

Example clay.inp uses spherical_harmonics_hkl for describing anisotropic peak broadening using
the exp_conv_const convolution as follows:

str ...
 spherical_harmonics_hkl sh
 sh_order 8
 exp_conv_const = (sh-1) Tan(Th);

17.23.2 Miscellaneous models using User defined equations

Anisotropic Gaussian broadening as a function of L (see example CEO2HKL.INP):

str ...
 prm a 0.1 min 0.0001 max 5
 prm b 0.1 min 0.0001 max 5
 gauss_fwhm = If(L==0, a Tan(Th) + 0.2, b Tan(Th));

Anisotropic peak shifts as a function of L (th2_offset):

str ...
 prm at 0.07 min 0.0001 max 1
 prm bt 0.07 min 0.0001 max 1
 th2_offset = If(L == 0, at Tan(Th), bt Tan(Th));

Description of anisotropic peak broadening using the March (1932) relation and str_hkl_angle:

str ...
 str_hkl_angle ang1 1 0 0
 prm p1 1 min 0.0001 max 2
 prm p2 0.01 min 0.0001 max 0.1
 lor_fwhm = p2 Tan(Th) Multiplicities_Sum(((p1^2 Cos(ang1)^2 +
 Sin(ang1)^2 / p1)^(-1.5)));

17.24 . Simulated annealing and structure determination

Defining continue_after_convergence and a temperature regime is analogous to defining a simu-
lated annealing process (Coelho, 2000). After convergence, a new refinement cycle is initiated
with parameter values changed according to any defined val_on_continue attributes and

rand_xyz or randomize_on_errors processes. Simulated annealing is therefore not specific to
structure solution, see for example ONLYPENA.INP and ROSENBROCK-10.INP. Convergence is de-
termined when the change in 𝜒2 is less than chi2_convergence_criteria for three consecutive cy-
cles and when all defined stop_when parameter attributes evaluate to true. Example:

chi2_convergence_criteria = If(Cycle_Iter < 10, 0.001, 0.01);

Miscellanous 167

167 Miscellanous

For structure solution in real space, the need for computation efficiency is critical. In many cases
computation speed can be increased by up to a factor of 20 or more with the appropriate choice
of keywords. Keywords that facilitate speed are:

chi2_convergence_criteria...
quick_refine...
yobs_to_xo_posn_yobs...

Another category is one that facilitate structure solution by changing the form of 𝜒2:

penalties_weighting_K1...
penalty...
occ_merge...
rigid...

Further keywords and processes typically used are:

file_name_for_best_solutions
seed
temperature !E ...
 move_to_the_next_temperature_regardless_of_the_change_in_rwp
 save_values_as_best_after_randomization
 use_best_values
xdd ... or xdd_scr ...
 str ...
 site ... rand_xyz ...

17.24.1 Penalties used in structure determination

Introducing suitable penalties can reduce the number of local minima in 𝜒2 and correspondingly
increase the chances of obtaining a global minimum. The structure factor for a reflection with
Miller indices 10 0 0 for a two-atom triclinic unit cell with fractional atomic coordinates of (0,0,0)
and (x, 0,0) is given by 4 cos(hx)2; here there are 10 local minima for 0<x<1. If it was known that
the bond length distance is half the distance of the a lattice parameter then a suitable penalty
would reduce the number of minima to one. In this trivial example the number of minima increases
as the Miller indices increase. For non-trivial structures and for the important d spacing range
near inter-atomic distances of 1 to 2Å the number of local minima is very large. Bragg reflections
with large Miller indices that are heavily weighted are expected to contain many false minima; by
applying an appropriate weighting scheme to the diffraction data the search for the global mini-
mum can be facilitated. For powder data the default weighting scheme is:

weighting = If(Yobs <= 1, 1, 1 / Yobs);

For single crystal data the following, which is proportional to 1/d, works well:

weighting = 1 / (Sin(X Deg / 2) Max(Yobs,1));

A more elaborate scheme which also works well for single crystal data is:

weighting = (Abs(Yobs-Ycalc) / Abs(Yobs+Ycalc) + 1) / Sin(X Deg / 2);

Miscellanous 168

168 Miscellanous

Two penalty functions that have shown to facilitate the determination of structures are the anti-
bumping (AB) penalty and the potential energy penalty U. The anti-bumping penalty is written as:

𝐴𝐵𝑖 = {
∑(𝑟𝑖𝑗 − 𝑟𝑜)

2
, for 𝑟𝑖𝑗 < 𝑟𝑜 and 𝑖 ≠ 𝑗

0, for 𝑟𝑖𝑗 > 𝑟𝑜

(17-14)

where r0 is a bond length distance, rij the distance between atoms i and j including symmetry
equivalent positions and the summation is over all atoms of type j. The ai_anti_bump and box_in-
teraction keywords are used to implement the penalty of Eq. (17-15) using the AI_Anti_Bump and
Anti_Bump macros respectively. Typically, Anti bump constraints are applied to heavy atoms; an
over use of such constraints can in fact hinder simulated annealing in finding the global minimum.
Applying the constraint for the first few iterations of a refinement cycle can also be beneficial;
this is achieved in the AI_Anti_Bump macro by writing the penalty in terms of the reserved param-
eter Cycle_Iter; see for example CIME-DECOMPOSE.INP.

The grs_interaction can be used to calculate the Lennard-Jones or Born-Mayer potentials and it
is suited to ionic atomic models (see example ALVO4-GRS-AUTO.INP). For a site i they comprise a
Coulomb term Ci and a repulsive term Ri and is written as:

𝑈𝑖 = 𝐶𝑖 + 𝑅𝑖 (17-15)

where 𝐶𝑖 = 𝐴 ∑
𝑄𝑖𝑄𝑗

𝑟𝑖,𝑗
, 𝑖𝑖,𝑗 ≠ 𝑗

𝑅𝑖 = ∑
𝐵𝑖,𝑗

𝑟𝑖,𝑗
𝑛 , for Leonard Jones and 𝑖

𝑖,𝑗

≠ 𝑗

𝑅𝑖 = ∑ 𝑐𝑖,𝑗 𝑒𝑥𝑝(−𝑑 𝑟𝑖,𝑗), for Born − Mayer and 𝑖

𝑖,𝑗

≠ 𝑗

where A = e2/(40) and 0 is the permittivity of free space, Qi and Qj are the ionic valences of

atoms i and j, ri,j is the distance between atoms i and j and the summation is over all atoms to
infinity. The repulsive constants Bi,j, n, ci,j and d are characteristic of the atomic species and their
potential surrounds. The equation part of the grs_interaction is typically used to describe the re-
pulsive terms.

17.24.2 Bond length restraints

Example ALVO4-GRS-AUTO.INP defines a bondlength restraint using the GRS series between an
Aluminum site and three Oxygen sites. Valence charges have been set to +3 and –2 for Aluminum
and Oxygen, respectively. The expected bond length is 2 Å between for O-O bonds and 1.5 Å for
Al-O bonds:

Miscellanous 169

169 Miscellanous

site Al x @ 0.7491 y @ 0.6981 z @ 0.4069 occ Al+3 1 beq 0.25
site O1 x @ 0.6350 y @ 0.4873 z @ 0.2544 occ O-2 1 beq 1
site O2 x @ 0.2574 y @ 0.4325 z @ 0.4313 occ O-2 1 beq 1
site O3 x @ 0.0450 y @ 0.6935 z @ 0.4271 occ O-2 1 beq 1
Grs_Interaction(O*, O*, -2, -2, oo, 2.0, 5) penalty = oo;
Grs_Interaction(Al, O*, 4, -2, alo, 1.5, 5) penalty = alo;

The following example defines a bondlength restraint using the AI_Anti_Bump macro between a
Potassium site and three Carbon sites. The expected bond length is 4 Å between Potassium sites
and 1.3 Å between Carbon sites.

site K x @ 0.14305 y @ 0.21812 z @ 0.12167 occ K 1 beq 1
site C1 x @ 0.19191 y @ 0.40979 z @ 0.34583 occ C 1 beq 1
site C2 x @ 0.31926 y @ 0.35428 z @ 0.32606 occ C 1 beq 1
site C3 x @ 0.10935 y @ 0.30991 z @ 0.39733 occ C 1 beq 1
AI_Anti_Bump(K , K , 4 , 1)
AI_Anti_Bump(C*, C*, 1.3, 1)

Unlike the first example, there's no explicit definition of a penalty function as the AI_Anti_Bump
macro includes the penalty function.

17.25 . File types and formats

Table 17-4. File types.

*.PRO Project files.

*.INP Input file in INP format.

*.OUT Output file created on termination of refinement in INP format.

*.STR Structure data. Same format as *.INP.

*.LAM Source emission profile data. Same format as *.INP.

*.DEF Program defaults. Same format as *.INP.

*.LOG TOPAS.LOG and TC.LOG. Useful for tracking input errors.

Measurement Data

*.SST Implies an equal x-axis and has the folformat of “start, step, data points….” SST
files can be used instead of *.XY files. As x-axis values are not used, they save
space on creation as well as on loading. For equal x-axis data then the macro
Out_XDD_SST can be used in the following manner:

xdd …
Out_XDD_SST(filename.sst) = Ycalc; ‘ outut Ycalc
Out_XDD_SST(filename.sst) = Yobs – Ycalc; ‘ output difference plot

*.RAW Bruker AXS binaries (DIFFRAC AT and DIFFRACplus)

*.DAT, *.XDD, *.CAL, *.XY, *XYE ASCII file formats, see Table 17-5

*.SCR ASCII file format comprising lines of h, k, l, m, d, 2, and Fo.

*.HKL ShelX HKL4 format.

Structure and structure factor data

Miscellanous 170

170 Miscellanous

*.CIF Crystallographic Information File; International Union for Crystallography.

*.FCF CIF file representation of structure factor details suitable for generating Fou-
rier maps using ShelX.

Table 17-5. ASCII input data file formats. *.XY, *.XYE, *.XDD and *.CAL are white space delimited
and can contain line and block comments.

*.DAT, LHPM/RIET7/CSRIET

 Line 1-4 Comments
 Line 5 Start, Step and Finish angle
 Line 6 … Observed XRD data points

GSAS ("std - const", "alt - ralf"), use gsas_format

 Line 1 Legend
 Line 2 Item 3: Number of data points
 Line 3 … Depending on item10 and item5
 For item10 = "STD" and item5 = "CONST"

xmin = item6/div
step =item7/div
read(10(i2,F6.0) iww(i),y(i) i=1, npts
sigma(i)=sqr(y(i)/iww(i)) i=1, npts

For item10 = "ALT" and item5 = "RALF"
xmin = item6/32
step = item7/32
read(4(F8.0,F7.4,F5.4) x(i), y(i), sigma(i) i=1, npts
x(i) = x(i)/32 i=1, npts
do i = 1, npts-1
 div = x(i+1)-x(i)
 y(i) =1000 * y(i)/div
 sigma(i) = 1000 * sigma(i)/div
end do

rk (constant wavelength data): div = 100
rk (time of flight data): div = 1

FullProf (INSTRM = 0: free format file), use fullprof_format

 Line 1 Start angle, step width, finish angle, comments
Line 2 … Observed XRD data points (any number of rows)

*.XDD, *.CAL Line 1 Optional line for comments
Line 2 … Start, Step and Finish angle

 Next three numbers are unused

 Observed XRD data points
*.XY 2 and intensity data values
*.XYE 2, intensity and intensity error values.

Miscellanous 171

171 Miscellanous

17.26 . Batch mode operation – TC.EXE

The command line program tc.exe provides for batch mode operation. Running tc.exe without
arguments displays help information. Running an INP file called PBSO4.INP is as follows:

tc pbso4

Macros can be passed to the command line. Passing a file name to an INP file is as follows:

1) Create a TEMPLATE.INP file with the required refinement details, this could look like the fol-
lowing:

xdd FILE
etc...

2) TEMPLATE.INP is fed to TC.EXE at the command line; the word FILE (within TEMPLATE.INP) is
expanded to whatever the macro on the command line comtains. For example:

tc ...\file_directory\template.inp "macro FILE { file.xy }"

The macro called FILE is described on the command line within quotation marks. On running
tc.exe the word 'FILE' occurring in TEMPATE.INP is expanded to 'file.xy'. Note that more than one
macro can be described on the command line. To process a whole directory of data files, say *.XY
file for example, then:

1) Execute the following DOS command from the file directory:

dir *.xy > ...\main_ta_directory\xy.bat

The XY.BAT file will then reside in the main TA directory.

2) Edit ...\MAIN_TA_DIRECTORY\XY.BAT to look like the following:

tc ...\file_directory\template "macro FILE { file1.xy }"
copy ...\file_directory\template.out ...\file_directory\file1.out
tc ...\file_directory\template.inp "macro FILE { file2.xy }"
copy ...\file_directory\template.out ...\file_directory\file2.out
etc...

After each run of TC.EXE a template.out file is created containing refined results. This file is cop-
ied to another file FILE1.OUT, FILE2.OUT etc... to avoid it from being overwritten. After running
XY.BAT a number of *.OUT files is created one for each *.XY file. In summary tc.exe receives TEM-
PLATE.INP to process. Words occurring in TEMPLATE.INP are expanded depending on the macros
described on the command line.

Keywords 172

172 Keywords

18. KEYWORDS

18.1 ... Data structures

The following describes keyword dependencies. Trailing ‘...’ implies that more than one node of
that type can be inserted under its parent. Items enclosed in square brackets are optional. Items
beginning with a capital T corresponds to keyword groups analogous to complex types in XML.

Ttop
Tcomm_1
Tcomm_2
Ttop_xdd
Tglobal
Txdd
Txdd_scr
Tindexing
Tcharge_flipping

Ttop_xdd
[convolution_step #1]
[Rp !E] [Rs !E]
[x_calculation_step !E]

Tglobal
TMinimization
Trwp
[A_matrix] [C_matrix] [A_matrix_normalized] [C_matrix_normalized]
[conserve_memory]
[file_name_for_best_solutions $file]
[force_positive_fwhm]
[inp_text $name] …[inp_text_insert $name { … }]…
[iters #]
[no_LIMIT_warnings]
[num_cycles #]
[out_A_matrix $file]
[out_refinement_stats]
[out_rwp $file]
[out_prm_vals_per_iteration $file]... | [out_prm_vals_on_convergence $file]...
[process_times]
[randomise_file_out_normal $file]
[seed [#]]
[suspend_writing_to_log_file #1]
[temperature !E]...
[use_tube_dispersion_coefficients]
[verbose #1]

Keywords 173

173 Keywords

Txdd
[xdd $file [{$data}] [range #] [xye_format] [gsas_format] [fullprof_format]]...

Ttop_xdd
Txdd_comm_1
Tcomm_1
Tcomm_2
Tmin_max_rc
Trwp
[gui_add_bkg !E]
[xdd_sum !E] and [xdd_array !E]
[xo_Is]...

[xo E I E]...
Tcomm_1_2_phase_1_2

[d_Is]...
[d E I E]...
Tcomm_1_2_phase_1_2
[lebail #]

[hkl_Is]...
[lp_search !E]
[I_parameter_names_have_hkl $start_of_parameter_name]
[hkl_m_d_th2 # # # # # # E I E]...
Tspace_group
Tcomm_1_2_phase_1_2
Thkl_lat
[lebail #]

[str | dummy_str]...
Tstr_details
Thkl_lat
Tcomm_1_2_phase_1_2
Tmin_max_rs
[rigid]...
Tspace_group

Tcomm_1_2_phase_1_2
Tcomm_1
Tcomm_2
Tphase_1
Tphase_2

Txdd_scr
[xdd_scr $file] ...

Txdd_comm_1
Tcomm_2
Ttop_xdd
Tmin_max_r
[str]...

Tstr_details

Keywords 174

174 Keywords

Tphase_1
Tcomm_2
Thkl_lat
Tmin_max_r
[rigid]...
Tspace_group
Tscr_1

Tscr_1
[Flack E]
[i_on_error_ratio_tolerance #]
[num_highest_I_values_to_keep #]

Txdd_comm_1
[bkg [@] # # #...]
[degree_of_crystallinity #]
[d_spacing_to_energy_in_eV_for_f1_f11 !E]
[exclude #ex1 #ex2]...
[extra_X_left !E] [extra_X_right !E]
[fit_obj E [min_X !E] [max_X !E]]...
[neutron_data]
[rebin_with_dx_of !E]
[smooth #]
[start_X !E] [finish_X !E]
[weighting !E [recal_weighting_on_iter]]
[xdd_out $file [append]]...

Tout_record
[yobs_eqn !N E]
[yobs_to_xo_posn_yobs !E]

Tcomm_1
[axial_conv]...
[capillary_diameter_mm E]...
[lpsd_th2_angular_range_degrees E]...
[circles_conv E]...
[exp_conv_const E [exp_limit E]]...
[ft_conv E]...
[gauss_fwhm E]...
[h1 E h2 E m1 E m2 E]
[hat E [num_hats #1]]...
[modify_peak]
[more_accurate_Voigt]
[lor_fwhm E]...
[numerical_lor_gauss_conv]
[numerical_lor_ymin_on_ymax #0.0001]
[one_on_x_conv E]...
[pk_xo E]
[push_peak]...

Keywords 175

175 Keywords

[pv_lor E pv_fwhm E]
[spv_h1 E spv_h2 E spv_l1 E spv_l2 E]
[stacked_hats_conv [whole_hat E [hat_height E]]...[half_hat E [hat_height E]]...]...
[th2_offset E]...
[user_defined_convolution E min E max E]...
[WPPM_ft_conv E]...

Tcomm_2
[f0_f1_f11_atom]...
[lam [ymin_on_ymax #] [no_th_dependence] [Lam !E] [calculate_Lam]]
[scale_pks E]...
[scale_phase_X E]
[prm|local E [min !E][max !E][del !E][update !E][stop_when !E][val_on_continue !E]]...
[existing_prm E]...
[penalty !E]...
[out $file [append]]...

Tout_record

Tphase_1
[atom_out $file [append]]...

Tout_record
[auto_scale !E]
[del_approx !E]
[phase_name $phase_name]
[phase_out $file [append]]...
[phase_out_X $file [append]] …
[brindley_spherical_r_cm !E]
[r_bragg #]
[remove_phase !E]
[scale E]

Tphase_2
[peak_buffer_step E [report_on]]
[peak_type $type]
[numerical_area E]

Tstr_details
[append_cartesian] [append_fractional [in_str_format]]
[append_bond_lengths [consider_lattice_parameters]]
[atomic_interaction N E] | [ai_anti_bump N]...
[box_interaction [from_N #] [to_N #] [no_self_interaction] $site_1 $site_2 N E]...
[fourier_map !E]
[grs_interaction [from_N #][to_N #][no_self_interaction] $site_1 $site_2 qi # qj # N E]...
[hkl_plane $hkl]...
[no_f11]
[normalize_FCs]
[occ_merge $sites [occ_merge_radius !E]]...
[p1_fractional_to_file $file] [in_str_format]...

Keywords 176

176 Keywords

[site $site]...
[adps] [u11 E] [u22 E] [u33 E] [u12 E] [u13 E] [u23 E]
Tmin_r_max_r

[sites_distance N] | [sites_angle N] | [sites_flatten N [sites_flatten_tol !E]]...
[sites_geometry N]...
[siv_s1_s2 # #]
[report_on_str]
[view_structure]

Thkl_lat
[a E] [b E] [c E] [al E] [be E] [ga E]
[normals_plot !E]...
[phase_penalties $sites N [hkl_Re_Im #h #k #l #Re #Im]...]...
[spherical_harmonics_hkl $name]...
[str_hkl_angle N h k l]...
[omit_hkls !E]

Tout_record
[out_record]...

Tmin_r_max_r
[min_r #] [max_r #]

Tspace_group
[space_group $symbol]

Miscellanous
[aberration_range_change_allowed !E]
[default_I_attributes !E]
load, move_to, for

18.2 ... Alphabetical listing of keywords

[a E] [b E] [c E] [al E] [be E] [ga E]

Lattice parameters in Å and lattice angles in degrees.

[adps] [u11 E] [u22 E] [u33 E] [u12 E] [u13 E] [u23 E]

Use of adps generates the unn atomic displacement parameters with considerations made for
special positions. On termination of refinement the adps keyword is replaced with the unn pa-
rameters; see example AE1-ADPS.INP. Instead of using the adps keyword the unn parameters
can be manually entered. The unn matrix can be kept positive definite with the site dependent
macro ADPs_Keep_PD; this can stabilize refinement. The ADPs_Keep_PD macro can be used
after the unn parameters are created. For determining adp constraints the 3x3 eigen value
determination routine of Kopp (2006) has been used.

Keywords 177

177 Keywords

amorphous_phase[A_matrix] [C_matrix] [A_matrix_normalized] [C_matrix_normalized]

Generates the un-normalized and normalized A and correlation matrices. If do_errors is de-
fined then C_matrix_normalized is automatically generated and appeneded to the OUT file.

[append_cartesian] [append_fractional [in_str_format]]

Appends site fractional coordinates in Cartesian or fractional coordinates respectively to the
*.OUT file at the end of a refinement. For the case of append_fractional, in_str_format formats
the output in INP format.

[append_bond_lengths [consider_lattice_parameters]]

Appends bond lengths to the end of the *.OUT file at the end of refinement. A number corre-
sponding to equivalent positions is appended to site names. consider_lattice_parameters in-
cludes lattice parameter errors in the calculation of bond length and bond angle errors. An
example of bond lengths output is as follows:

Y1:0 O1:0 2.23143
 O2:0 2.23143 88.083
 O3:0 2.28045 109.799 99.928

The first line gives the distance between the sites Y1 and O2. The first number in the second
line gives the distance between sites Y1 and O2. The third number of 88.083 gives the angle
between the vectors Y1 to O1 and Y1 to O2. The first number on the third line contains the dis-
tance between sites Y1 and O3. The second number in the third line contains the angle be-
tween the vectors Y1 to O3 and Y1 to O2. The third number in line three contains the angle be-
tween the vectors Y1 to O3 and Y1 to O1. Bond lengths, therefore, correspond to the first num-
ber in each line and bond angles start from the second number. The numbers after the site
name and after the ‘:’ character corresponds to the site equivalent position as found in the
*.SG space group files found in the SG directory

[atomic_interaction N E] | [ai_anti_bump N]...
ai_sites_1 $sites_1 ai_sites_2 $sites_2
[ai_no_self_interation]
[ai_closest_N !E]
[ai_radius !E]
[ai_exclude_eq_0]
[ai_only_eq_0]

Defines an atomic interaction with the name N between sites identified by $site_1 and $site_2.
For atomic_interaction, E is the site interaction equation that can be a function of R and Ri. R
returns the distance in Å between two atoms; these distances are updated when dependent
fractional atomic coordinates are modified. The name of the atomic_interaction N can be used
in equations including penalty equations. For ai_anti_bump, an internal c++ anti-bump inter-
action equation is used. For anti-bumping only, ai_anti_bump is faster than using atomic_in-
teraction. The macro AI_Anti_Bump uses ai_anti_bump. no_self_interaction prevents interac-
tions between equivalent positions of a site. This is useful when a general position is used to
describe a special position.

Keywords 178

178 Keywords

ai_closest_N: interactions between $sites_1 and $sites_2 are sorted by distance and only the
first ai_closest_N number of interactions are considered.

ai_radius: only the interactions between $sites_1 and $sites_2 that are within the distance
ai_radius is considered.

When ai_radius and ai_closest_N are both defined then interactions from both sets of corre-
sponding interaction are considered.

ai_exclude_eq_0: only interactions that is not the first equivalent positions in $sites_2 are
considered. For example, in the following:

atomic_interaction ...
ai_exclude_eq_0
ai_sites_1 Pb
ai_sites_2 “O1 O2”

the following interactions are considered:

Pb:0 and O1:n (n 0)
Pb:0 and O2:n (n 0)

where the number after the ‘:’ character corresponds to the equivalent positions of the sites.
ai_only_eq_0: only interactions between equivalent positions 0 are considered.

Functions

The atomic_interaction equation can be a function of the following functions:

AI_R(#ri): Returns the distance between the current site and the atom defined with Ri=#ri.

AI_R_CM: A function of no arguments that returns the geometric center of the current atom
and the atoms defined in $sites_2.

AI_Flatten(#toll): A function that returns the sum of distances of the current atom and those
defined in $sites_2 to an approximate plane of best fit. The plane of best fit is constructed
such that the sum of the perpendicular distances to the current atom plus those defined in
$sites_2 are a minimum

AI_Cos_Angle(#ri1, #ri2): Returns the Cos of the angle between the atom define as Ri=#ri1, the
current atom and the atom defined as Ri=#ri2.

AI_Angle(#ri1, #ri2) : Similar-to AI_Cos_Angle except that the value returned is the angle in
degrees.

Examples BENZENE_AI1.INP, BENZENE_AI2.INP and BENZENE_AI3.INP demonstrates the use of
the atomic_interation functions. atomic_interaction’s are used to apply geometric restraints.
For example, anti-bumping between molecules for the first ten iterations of a refinement cy-
cle can be formulated as follows:

Keywords 179

179 Keywords

atomic_interaction ai1 = If(R < 3, (R-3)^2, 0);
ai_exclude_eq_0
ai_sites_1 C*
ai_sites_2 C*
ai_radius 3

penalty = If(Cycle_Iter < 10, ai1, 0);

[atom_out $file [append]]...

Used for writing site dependent details to file. See out for a description of out_record. The
Out_CIF_STR macro uses atom_out

[axial_conv]...
filament_length E sample_length E receiving_slit_length E
[primary_soller_angle E]
[secondary_soller_angle E]
[axial_n_beta !E]

Full axial divergence model using the method of Cheary & Coelho (1998b). filament_length,
sample_length and receiving_slit_length define the lengths of the tube-filament, sample and
receiving slit in the axial plane in mm. primary_soller_angle and secondary_soller_angle define
Soller slit angles in degrees. axial_n_beta defines the number of rays emanating from a point
X-ray source in the axial plane. Larger values for axial_n_beta increases both accuracy and
calculation time. The macro Full_Axial_Model simplifies the use of axial_conv.

[bkg [@] # # # ...]

Defines a Chebyshev polynomial where the number of coefficients is equal to the number of
numeric values appearing after bkg.

[box_interaction [from_N #] [to_N #] [no_self_interaction] $site_1 $site_2 N E]...

Defines a site interaction with the name N between sites identified by $site_1 and $site_2. E
represents the site interaction equation which can be a function of R and Ri. R returns the
distance in Å between two atoms; these distances are updated when dependent fractional
atomic coordinates are modified. The name of the box_interaction N can be used in equations
including penalty equations. When either from_N or to_N are defined, the interactions be-
tween $site_1 and $site_2 are sorted by distance and only the interactions between the
from_N and to_N are considered. no_self_interaction prevents any interactions between
equivalent positions of the same site. This is useful when a general position is used to de-
scribe a special position. For example, the following could be used to iterate from the nearest
atom to the third atom from a site called Si1:

str
site Si1 ...
site O1 ...
site O2 ...
site O3 ...
box_interaction Si1 O* to_N 2 !si1o = (R-2)^2;
penalty = !si1o;

Keywords 180

180 Keywords

In this example the nearest three oxygen atoms are soft constrained to a distance of 2 Å by
the use of the penalty function. Counting starts at zero and thus to_N is set to 2 to iterate up
to the third nearest atom.

The wild card character ‘*’ used in “O*” means that sites with names starting with ‘O’ are con-
sidered. In addition to using the wild card character, the site names can be explicitly written
within double quotation marks, for example:

box_interaction Si1 “O1 O2 O3” to_N 3 etc...

Interactions between Si1 and the three oxygen atoms O1, O2, O3 may not all be included, for
example, if Si1 had as its nearest neighbours the following:

Si1-O1,1 at a distance of 1.0 Å

Si1-O2,3 at a distance of 1.1 Å

Si1-O2,1 at a distance of 1.2 Å

Si1-O1,2 at a distance of 1.3 Å

then two equivalent positions of site O1 and two equivalent positions of O2 are included in the
interaction equation; thus, interactions between Si1-O3 are not considered. To ensure that
each of the three oxygens had Si1 included in an interaction equation then the following could
be used:

box_interaction “O1 O2 O3” Si1 to_N 0 etc...

Thus, the order of $site_1 and $site_2 is important when either from_N or to_N is defined. The
reserved parameters Ri and Break can also be used in interaction equations when either
from_N or to_N is defined. Ri returns the index of the current interaction being operated on
with the first interaction starting at Ri = 0.

box_interaction is used for example by the Anti_Bump macro.

[brindley_spherical_r_cm !E]

Applies the Brindley correction for spherical particles. The macro Apply_Brindley_Spheri-
cal_R_PD is defined as:

macro Apply_Brindley_Spherical_R_PD(& R, & PD) {
brindley_spherical_r_cm = R PD;

}

R is the radius of the particle in cm and PD is the packing density. Here’s an example:

xdd ...
str

Apply_Brindley_Spherical_R_PD(R, PD)
MVW(0,0,0)

str
Apply_Brindley_Spherical_R_PD(R, PD)
MVW(0,0,0)

Keywords 181

181 Keywords

Use of phase_MAC or MVW is optional as they are are created as needed. The Brindley correc-
tion can be applied to all phases including xo_Is. In the case of phases that do not have lattice
parameters or sites, definitions of cell_volume, cell_mass and phase_MAC is required for the
Brindley correction to work and for weight_percent(s) to be calculated. This allows for the in-
corporation of non-structural phases in quantitative analysis; for example, the following is
valid as the necessary information have been included:

xo_Is
Apply_Brindley_Spherical_R_PD(0.002, 0.6)
MVW(654, 230, 0)
phase_MAC 200

[capillary_diameter_mm E]...
capillary_u_cm_inv E
[capillary_convergent_beam] [capillary_divergent_beam] [capillary_parallel_beam]
[capillary_focal_length_mm E]
[capillary_xy_n #]

Examples for the capillary convolution (Coelho & Rowles, 2017) are LAB6-STOE.INP and LAB6-
D8.INP as found in the directory TEST_EXAMPLES\CAPILLARY. If using a str phase then capil-
lary_u_cm_inv can be set to the calculated linear absorption coefficient multiplied by a pack-
ing density, for example:

prm packing_density 0.31208
capillary_diameter_mm @ 0.57313

capillary_u_cm_inv
= Get(mixture_MAC) Get(mixture_density_g_on_cm3) packing_density;

capillary_focal_length_mm @ 197.89657
capillary_convergent_beam

If not defined, capillary_focal_length_mm defaults to the diffractometer radius Rs.

[circles_conv E]...

Defines m in the convolution function:

(1 − m / ½) for = 0 to m

that is convoluted into phase peaks. m can be greater than or less than zero. circles_conv is
used for example by the Simple_Axial_Model macro.

Keywords 182

182 Keywords

[cloud $sites]...
[cloud_population !E]
[cloud_save $file]
[cloud_save_xyzs $file]
[cloud_load_xyzs $file]

[cloud_load_xyzs_omit_rwps !E]
[cloud_formation_omit_rwps !E]
[cloud_try_accept !E]
[cloud_gauss_fwhm !E]
[cloud_extract_and_save_xyzs $file]

[cloud_number_to_extract !E]
[cloud_atomic_separation !E]

cloud allows for the tracking of atoms defined in $sites in three dimensions. It can be useful
for determining the average positions of heavy atoms or rigid bodies during refinement cy-
cles. For example, a dummy atom, “site X1” say, can be placed at the center of a benzene ring
and then tracked as follows:

continue_after_convergence
...
cloud “X1”

cloud_population 100
cloud_save SOME_FILE.CLD

On termination of refinement the CLD file is saved; it can be viewed using the rigid body editor
of the GUI; see examples AE14-12.INP for a cloud example. cloud_population is the maximum
number of population members. Each population member comprises the fractional coordi-
nates of $sites and an associated Rwp value.

cloud_save_xyzs saves a cloud populations to file.

cloud_load_xyzs loads and reuses previously saved populations. cloud_load_xyzs_omit_rwps
can be used to exclude population membes whilst loading; it can be a function of
Get(Cloud_Rwp) where Cloud_Rwp is the associated Rwp of a population member.

cloud_formation_omit_rwps can be used to limit population membes in the formation of CLD
files; it can be a function of Get(Cloud_Rwp).

cloud_try_accept accepts population members if it evaluates to non-zero and if the best Rwp
since the last acceptance is less than a present population member or if the number of mem-
bers is less than cloud_population. If the number of population members equals cloud_popu-
lation then the population member with the lowest Rwp is discarded. cloud_try_accept is eval-
uated at the end of each refinement cycle; it default value is true. Here’s are some examples:

cloud_try_accept = And(Cycle, Mod(Cycle, 50);
cloud_try_accept = T == 10;

cloud_gauss_fwhm is the full width at half maximum of a three dimensional Gaussian that is
used to fill the cloud.

Keywords 183

183 Keywords

cloud_extract_and_save_xyzs searches the three dimensional cloud for high densities and ex-
tracts xyz positions; these are then saved to $file. cloud_number_to_extract defines the num-
ber of positions to extract and cloud_atomic_separation limits the atomic separation during
the extraction. The actual number of positions extracted may be less than cloud_num-
ber_to_extract depending on the cloud.

[conserve_memory]

Deletes temporary arrays used in intermediate calculations as often as possible; memory sav-
ings of up to 70% can be expected on some problems with subsequent lengthening of execu-
tion times by up to 40%. When approximate_A is used on dense matrices then con-
serve_memory can reduce memory usage by up to 90%.

[convolution_step #1]

An integer defining the number of calculated data points per measured data point. Increasing
convolution_step when the measurement step is large improves convolution accuracy. Only
when the measurement step is greater than about 0.03 degrees 2Th or when high precision is
required is it necessary to increase convolution_step.

[default_I_attributes E]

Changes the attributes of the I parameter, for example:

xo_Is... default_I_attributes 0 min 0.001 val_on_continue 1

Useful when randomizing lattice parameters during Le Bail refinements with continue_af-
ter_convergence.

[degree_of_crystallinity #]
[crystalline_area #]
[amorphous_area #]

Reports on the degree of crystallinity which is calculated as follows:

100 * Get(crystalline_area) / (Get(crystalline_area) + Get(amorphous_area))

crystalline_area and amorphous_area corresponds to the sum of the numerical areas under
the crystalline and amorphous phases respectively. Phases with amorphous_phase are
treated as amorphous in the calculation.

[d_Is]...
[d E I E]...

Defines a phase type that uses d-spacing values for generating peak positions. d corresponds
to the peak position in d-space in Å and I is the intensity parameter before applying any
scale_pks equations.

Keywords 184

184 Keywords

[d_spacing_to_energy_in_eV_for_f1_f11 !E]

Can be a function of the reserved parameter D_spacing. f' and f" (see section 17.6) values used
corresponds to energies given by d_spacing_to_energy_in_eV_for_f1_f11. Used for refining on
energy dispersive data (see example ED_SI_STR.INP), for example:

‘ E(eV) = 10^5 / (8.065541 Lambda(A))
prm !detector_angle_in_radians = 7.77 Deg_on_2;
prm wavelength = 2 D_spacing Sin(detector_angle_in_radians);
prm energy_in_eV = 10^5 / (8.065541 wavelength);
pk_xo = 10^-3 energy_in_eV + zero;
d_spacing_to_energy_in_eV_for_f1_f11 = energy_in_eV;

[exclude #x1 #x2]...

Excludes an x-axis region between #x1 and #x2. The macro Exclude simplifies usage; see ex-
ample CEO2.INP.

[exp_conv_const E [exp_limit E]]...

Defines m in the aberration function:

A = Exp(Ln(0.001) m) for = 0 to exp_limit

that is convoluted into phase peaks. Used by the Absorption and Absorption_With_Sam-
ple_Thickness_mm macros. The range of A is:

(0 < < limit) for m < 0, or, (limit < < 0) for m > 0

where A(limit) = 0.001. Alternatively limit can be defined using exp_limit.

[extra_X_left !E] [extra_X_right !E]

Determines the extra x-axis range for hkl generation. For TOF data extra_X_left is typically
used. For x-ray data then extra_X_right is typically used. Both defaults to 0.5.

[file_name_for_best_solutions $file]

Appends INP file details to $file during refinement with independent parameter values up-
dated. The operation is performed when convergence results in the best Rwp.

[force_positive_fwhm]

Forces final Lorentzian and/or Gaussian FWHM values to be positive. The following INP snip-
pets are equivalent:

Keywords 185

185 Keywords

force_positive_fwhm
xdd ...

str ...
lor_fwhm = Rand(-1,1);

xdd ...

str ...
lor_fwhm = Abs(Rand(-1.1,));

[fit_obj E [min_X !E] [max_X !E]]...
[fo_transform_X !E]
[fit_obj_phase !E]

Defines User defined functions added to Ycalc, see example PVS.INP. fit_obj’s can be a func-
tion of X. min_X and max_X define the x-axis range of the fit_obj; if min_X is omitted then the
fit_obj is calculated from the start of the x-axis; similarly, if max_X is omitted then the fit_obj
is calculated to the end of the x-axis. fo_transform_X is a dependent of fit_obj and it can be
used to transform X used within the fit_obj.

[fourier_map !E]
[fourier_map_formula !E]
[extend_calculated_sphere_to !E]
[min_grid_spacing !E]
[correct_for_atomic_scattering_factors !E]
[f_atom_type $type f_atom_quantity !E]...

If fourier_map is non-zero then a Fourier map is calculated on refinement termination and
shown in the OpenGL window; maps can be calculated for x-ray or neutron single crystal or
powder data, see test examples FOURIER-MAP-AE14.INP and FOURIER-MAP-CIME.INP. The type
of map is determined by fourier_map_formula which can be a function of the reserved param-
eter names Fcalc, Fobs and D_spacing; here are some examples:

fourier_map_formula = Fobs; ‘ The default
fourier_map_formula = 2 Fobs - Fcalc;

For single crystal data, Fobs corresponds to the observed structure moduli; powder data Fobs
is calculated from the Rietveld decomposition formula. Structure factor phases are deter-
mined from Fcalc. Reflections that are missing from within the Ewald sphere are included with
Fobs set to Fcalc. If extend_calculated_sphere_to is defined, then the Ewald sphere is ex-
tended. scale_pks definitions are removed from Fobs. If scale_pks evaluates to zero for a par-
ticular reflection, then Fobs is set to Fcalc; the number of Fobs reflections set to Fcalc is re-
ported on.

[gauss_fwhm E]...

Defines the FWHM of a Gaussian function convoluted into phase peaks; see CS_G and Strain_G
macros.

[hkl_plane $hkl]...

Used by the OpenGL viewer to display hkl planes, see the CEO2.STR file in the RIGID directory.
Here are some examples:

Keywords 186

186 Keywords

str ...
hkl_plane 1 1 1
hkl_plane “2 -2 0”

[grs_interaction [from_N #] [to_N #] [no_self_interaction] $site_1 $site_2 qi # qj # N E]...

Defines a GRS interaction with the name N between sites identified by $site_1 and $site_2. E
represents the GRS interaction equation that can be a function of R; R returns the distance in
Å between two atoms; these distances are updated when dependent fractional atomic coor-
dinates are modified. The name N of the grs_interaction can be used in equations including
penalty equations. When either from_N or to_N are defined, the interactions between $site_1
and $site_2 are sorted by distance and only the interactions between the from_N and to_N are
considered. no_self_interaction prevents any interactions between equivalent positions of
the same site. This is useful when a general position is used to describe a special position. qi
and qj corresponds to the valence charges used to calculate the Coulomb sum for the $site_1
and $site_2 sites respectively. grs_interaction is typically used for applying electrostatic re-
straints in inorganic materials. The GRS_Interaction macro simplifies the use of grs_interac-
tion.

[hat E [num_hats #1]]...

Defines the x-axis extent of an impulse function that is convoluted into phase peaks.
num_hats correspond to the number of hats to be convoluted. hat is used for example by the
Slit_Width and Specimen_Tilt macros.

[hkl_Is]...
[lp_search !E]
[I_parameter_names_have_hkl $start_of_parameter_name]
[hkl_m_d_th2 # # # # # # I E]...

Defines a phase type that uses hkls for generating peak positions. lp_search uses a indexing
algorithm that is independent of d-spacing extraction (bCoelho, 2017); see LP-SEARCH-
PBSO4.INP. lp_search minimizes on a figure of merit function that gives a measure of correct-
ness for a particular set of lattice parameters. The method avoids difficulties associated with
extracting d-spacings from complex patterns comprising heavily overlapped lines; the pri-
mary difficulty being that of ascertaining the number of lines present. I_parame-
ter_names_have_hkl assigns names to generated Intensity parameters that start with
$start_of_parameter_name and end with the corresponding hkl. The numbers after
hkl_m_d_th2 define h k l m d and 2 values, where

h, k, l : Miller indices
m : multiplicity.
d and th2 : d and 2 values.
I : Peak intensity parameter before applying any scale_pks.

If no hkl_m_d_th2 keywords are defined, then hkls are generated using the space group. Gen-
erated hkl_m_d_th2 details are placed after the space_group keyword on refinement termina-
tion. Intensity parameters are given an initial starting value of 1. If lebail is not defined, then
the intensity parameters are given the code of @. For example, the following:

Keywords 187

187 Keywords

xdd quartz.xdd
...
hkl_Is
 Hexagonal(4.91459, 5.40603)
 space_group P_31_2_1

generates in the OUT file the following:

xdd quartz.xdd
...
hkl_Is

Hexagonal(4.91459, 5.40603)
space_group P_31_2_1
load hkl_m_d_th2 I {

1 0 0 6 4.25635 20.85324 @ 3147.83321
1 0 1 6 3.34470 26.62997 @ 8559.23955
1 0 -1 6 3.34470 26.62997 @ 8559.23955
...

}

The Create_hklm_d_Th2_Ip_file macro creates an hkl file listing in the "load hkl_m_d_th2 I" for-
mat as shown above. Even though the structure would have no sites, weight_percent can still
be used; it uses whatever value is defined by cell_mass in order to calculate weight_percent.

[inp_text $name] …
[inp_text_insert $name { … }]…

inp_text provides a means of defining INP text at one place in a file and having that text in-
serted at another place in the INP file, or in an #include file, using inp_text_insert. The inp_text
is updated on refinement termination. inp_text is very useful in simplifying complicated INP
files where placing control parameters at the top of the file is of benefit; see test_example
INP-TEXT.INP. An example is as follows:

inp_text back_ground {
bkg @ 17.365576` 14.5555883` 14.038067`

}

xdd …
inp_text_insert back_ground

More than one inp_text can be of the same name; in such cases inp_text_insert will use the
most recent inp_text.

[iters #]

The maximum number of refinement iterations, default is 500000.

[lam [ymin_on_ymax #] [no_th_dependence] [Lam !E] [calculate_Lam]]
[la E lo E [lh E] | [lg E] [lo_ref]]...

Defines an emission profile (see section 5) where each la determines an emission profile line,
where:

Keywords 188

188 Keywords

la: Area under the emission profile line
lo: Wavelength in Å of the emission profile line
lh: HW in mÅ of a Lorentzian convoluted into the emission profile line.
lg: HW in mÅ of a Gaussian convoluted into the emission profile line.

ymin_on_ymax determines the x-axis extent to which an emission profile line is calculated;
default value is 0.001. no_th_dependence defines an emission profile that is 2 independent;
it allows use of non-X-ray data or fitting to negative 2 values. By default, the program calcu-
lates d-spacings using the wavelength of the emission profile line with the highest la param-
eter. However, if la parameters are refined the reference wavelength could change causing
confusion. To avoid this lo_ref can be used to identify the reference wavelength.

Lam defines the value to be used for the reserved parameter Lam. When Lam is not defined
then the reserved parameter Lam is defined as the wavelength of the emission profile line
with the largest la value. Note that Lam is used to determine the Bragg angle.

calculate_Lam calculates Lam such that it corresponds to the wavelength at the peak of the
emission profile. Lam needs to be set to an approximate value corresponding to the peak of
the emission profile.

[lor_fwhm E]...

Defines the FWHM of a Lorentzian that is convoluted into phase peaks; see for example the
CS_L and Strain_L macros.

[lpsd_th2_angular_range_degrees E]...
lpsd_equitorial_divergence_degrees E
lpsd_equitorial_sample_length_mm E

Convolutes the aberration for a Linear Position Sensitive Detector (Cheary & Coelho, 1994) into
phase peaks. lpsd_th2_angular_range_degrees correspond to the angular range of the LPSD
in 2Th degrees. lpsd_equitorial_divergence_degrees is the equatorial divergence in degrees of
the primary beam and lpsd_equitorial_sample_length_mm the length of the sample in the
equatorial plane. lpsd_th2_angular_range_degrees corrects peak shapes, intensities and 2Th
shifts, see example LPSD-SIMULATED.INP.

[min_r #] [max_r #]

Defines the minimum and maximum radii for calculating bond lengths, defaults are 0 and 3.2
Å respectively.

[neutron_data]

Signals the use of neutron atomic scattering lengths. Scattering lengths for isotopes can be
used by placing the isotope name after “occ” as in:

occ 6Li 1
occ 36Ar 1

The scattering lengths data, contained in the file NEUTSCAT.CPP, is from

Keywords 189

189 Keywords

www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM

Constant wavelength neutron diffraction requires a Lorentz correction using the Lo-
rentz_Factor macro (defined in TOPAS.INC); it is defined as follows:

scale_pks = 1 / (Sin(Th)^2 Cos(Th));

[no_LIMIT_warnings]

Suppresses LIMIT_MIN and LIMIT_MAX warnings.

[normalize_FCs]

Normalizes site fractional coordinates. Normalization does not occur for coordinates with
min/max limits, or is part of a rigid body or is part of a site constraint of any kind.

[numerical_area E]

Returns the numerically calculated area under the phase.

[num_cycles #]

Determines the number of cycles to process when continue_after_convergence is defined.
The number of iterations, defined using iters, is still adhered to. Thus, to set number of cycles
to 100 then using something like:

continue_after_convergence
iters 1000000000
num_cycles 100

[occ_merge $sites [occ_merge_radius !E]]...

Rewrites site occupancies of sites defined in $sites in terms of their fractional atomic coor-
dinates (Favre-Nicolin and R. Cerny 2002). This is useful during structure solution for merging
rigid bodies such as ocathedra. It is also useful for identifying special positions as seen in the
example PBSO4-DECOMPOSE.INP. In the present implementation $sites are thought of as
spheres with a radius occ_merge_radius. When two atoms approach with a distance less than
the sum of their respective occ_merge_radius’s then the spheres intersect. The occupancies
of the sites, occ_xyz, become:

occ_xyz = 1 / (1 + Intersecting_fractional_volumes)

In this way any number of sites can be merged. Sites appearing in $sites cannot have their
occupancies refined. On termination of refinement the occ parameter values are updated with
their corresponding occ_xyz.

[omit_hkls !E]

Allows for the filtering of hkls using the reserved parameter names of H, K, L and D_spacing.
More than one omit_hkls can be defined, for example:

Keywords 190

190 Keywords

omit_hkls = If(And(H==0, K==0), 1, 0);
omit_hkls = And(H==0, K==1);
omit_hkls = D_spacing < 1;

[one_on_x_conv E]...

Defines m in the convolution function:

(4 m) −½ for = 0 to m

that is convoluted into phase peaks. m can be greater than or less than zero, see for example
the Divergence macro.

[out_A_matrix $file]
[A_matrix_prm_filter $filter]

Outputs the least squares A matrix to the file $file; used in the macro Out_for_cf. Output can
be limited by using A_matrix_prm_filter, here’s an example for outputting A matrix elements
corresponding to parameters with names starting with ‘q’:

out_A_matrix file.a A_matrix_prm_filter q*

[out $file [append]]...
[out_record]

[out_eqn !E]
[out_fmt $c_fmt_string]
[out_fmt_err $c_fmt_string]...

Used for writing parameter details to a file. The details are appended to $file when append is
defined. out_eqn defines the equation or parameter to be written to $file using the out_fmt.
$c_fmt_string describes a format string in c syntax containing a single format specified for a
double precision number. out_fmt_err defines the $c_fmt_string used for formatting the error
of eqn. Both out_fmt and out_fmt_err requires an out_eqn definition. out_fmt can be used
without out_eqn for writing strings. The order of out_fmt and out_fmt_err determines which
is written to file first; thus. The following illustrates the use of out using the Out macros (see
OUT-1.INP):

xdd ...
out "sample output.txt" append
str ...

CS_L(cs_l, 1000)
Out_String("\tCrystallite Size Results:\n")
Out_String("\t=========================\n")
Out(cs_l, "\tCrystallite Size (nm):\t%11.5f",
 "\tError in Crystallite Size:\t%11.5f\n")

[out_rwp $file]

Outputs a list of Rwp values encountered during refinement to the file $file in XDD format.

Keywords 191

191 Keywords

[out_prm_vals_per_iteration $file]... | [out_prm_vals_on_convergence $file]...
[out_prm_vals_filter $filter]
[out_prm_vals_dependents_filter $filter_dependents]

Outputs refined independent parameter values per iteration or on convergence into the file
$file. out_prm_vals_filter can be used to filter the parameters; $fliter can contain the wild card
character ’*’ and the negation character ’!’, for example:

out_prm_vals_per_iteration PRM_VALS.TXT out_prm_vals_filter "* !u*"

More than one out_prm_vals_per_iteration/out_prm_vals_on_convergence can be defined
outputting different parameters into different files depending on the corresponding
out_prm_vals_filter. out_prm_vals_dependents_filter allows dependent parameters to be out-
putted according to $filter_dependents.

[p1_fractional_to_file $file] [in_str_format]

Structure dependent. Saves atomic positions corresponding to space group P1 to the file
$file. The original space group can be any space group. If in_str_format is defined, then the
structural data is saved in INP format.

[peak_type $type]
[pv_lor E pv_fwhm E]
[h1 E h2 E m1 E m2 E]
[spv_h1 E spv_h2 E spv_l1 E spv_l2 E]

Sets the peak type for a phase, see section 5. The following peak_type’s are available:

Peak type $type Parameters

Fundamental
Parameters

fp

Pseudo-Voigt pv pv_lor: the Lorentzian fraction of the peak profile(s).
pv_fwhm: the FWHM of the peak profile(s).

Split-PearsonVII spvii The sum of h1 and h2 gives the FWHM of the composite peak.
m1, m2 are the PearsonVII exponents of the left and right com-

posite peak.

Split-PseudoVoigt spv The sum of spv_h1 and spv_h2 gives the full width at half max-
imum of the composite peak. spv_l1, spv_l2 are the left and

right Lorentzian fractions.

[peak_buffer_step E [report_on]]

Peaks shapes typically change in a gradual manner over a short 2 range; a new peak shape,
therefore, is calculated only if the position of the last peak shape calculated is more than the
distance defined by peak_buffer_step. Various stretching and interpolation procedures are
used to calculate in-between peaks, see also section 5.4. The default setting is as follows:

peak_buffer_step = 500*Peak_Calculation_Step.

Keywords 192

192 Keywords

When the reserved parameter names of H, K, L, M, or parameter names associated with
sh_Cij_prm and hkl_angle, are used in peak convolution equations, then irregular peak shapes
are possible over short 2 ranges. In such cases, separate peak shapes are calculated for each
peak irrespective of peak_buffer_step. report_on displays the number of peaks in the peaks
buffer.

[phase_out $file [append]]...

Used for writing phase dependent details to file. See out for a description of out_record. The
Create_hklm_d_Th2_Ip_file uses phase_out.

[phase_out_X $file [append]]…

Phase dependent keyword that writes phase Ycalc details to a file. The out_eqn can contain
reserved parameter names occurring in xdd_out as well as Get(phase_ycalc); for example:

phase_out_X Phase.txt load out_record out_fmt out_eqn {
" %9.0f" = Xi;
" %11.5f" = X;
" %11.5f" = Get(phase_ycalc);
" %11.5f" = Ycalc;
" %11.5f" = Yobs;
" %11.5f\n" = Get(weighting);

}

The x-axis extent of the output corresponds to the x-axis range of the phase. If conserve_me-
meory is used, then the message “phase_out_X: No data” is outputted.

[pk_xo E]

Applied to all phase types except for xo_Is phases; provides a mechanism for transforming
peak position to an x-axis position. For example, the peak position for neutron time-of-flight
data is typically calculated in time-of-flight space, tof, or,

tof = t0 + t1 dhkl + t2 dhkl2

where t0 and t1 and t2 are diffractometer constants. See examples TOF_BALZAR_SH1.INP and
TOF_BALZAR_BR1.INP.

[phase_name $phase_name]

The name given to a phase; used for reporting purposes.

[phase_penalties $sites N]...[hkl_Re_Im #h #k #l #Re #Im]...
[accumulate_phases_and_save_to_file $file]

[accumulate_phases_when !E]

phase_penalties for a single hkl is defined as follows:

𝑃𝑝ℎ𝑘𝑙 = {
0, 𝑖𝑓

𝑠,ℎ𝑘𝑙
− 45° <

𝑐
<

𝑠,ℎ𝑘𝑙
+ 45°

𝑑 𝐼𝑐,ℎ𝑘𝑙
2 (

𝑠,ℎ𝑘𝑙
−

𝑐,ℎ𝑘𝑙
) , 𝑖𝑓

𝑐
<

𝑠,ℎ𝑘𝑙
− 45°𝑜𝑟

𝑐
>

𝑠,ℎ𝑘𝑙
+ 45°

Keywords 193

193 Keywords

where s assigned phase, c = calculated phase, Ic = calculated intensity and d is the reflection
d-spacing. The name N returns the sum of the phase_penalties and it can be used in equations
and in particular penalty equations. c is calculated from sites identified in $sites.

#h, #k, #l are user defined hkls; they are used for formulating the phase penalties. #Re and
#Im are the real and imaginary parts of s. An example usage of phase penalties (see examples
AE14-12.INP and AE5-AUTO.INP) is as follows:

penalty = pp1;

phase_penalties * pp1
load hkl_Re_Im {

0 1 2 1 0
1 0 -2 1 0
1 -2 -1 1 0

}

hkls chosen for phase penalties should comprise those that are of high intensity, large d-spac-
ing and isolated from other peaks to avoid peak overlap. Origin defining hkls are typically cho-
sen.

accumulate_phases_and_save_to_file saves the average phases collected to $file. Phases are
collected when accumulate_phases_when evaluates to true; accumulate_phases_when de-
faults to true. Here’s an example use:

load temperature { 1 1 1 1 10 }
 move_to_the_next_temperature_regardless_of_the_change_in_rwp
accumulate_phases_and_save_to_file SOME_FILE.TXT

accumulate_phases_when = T == 10;

Here phases with the best Rwp since the last accumulation are accumulated when the current
temperature is 10.

[process_times]

Displays process times on termination of refinement.

[rand_xyz !E]

If continue_after_convergence is defined, then rand_xyz is executed at the end of a refinement
cycle. It adds the vector u to the site fractional coordinate, the direction of which is random
and the magnitude in Å is:

|u| = T rand_xyz

where T is the current temperature. To add a shift to an atom between 0 and 1 Å the following
could be used:

temperature 1
site... occ 1 C beq 1 rand_xyz = Rand(0,1);

Only fractional coordinates (x, y, z) that are independent parameters are considered.

Keywords 194

194 Keywords

[r_bragg #]

Reports on the R-Bragg value. R-Bragg is independent of hkl's and thus can be calculated for
all phase types that contain phase peaks.

[rebin_with_dx_of !E]
[rebin_start_x_at !E]

Rebins the observed data (and SigmaYobs if it exists), see example CLAY.INP. It can be a func-
tion of the reserved parameter X as demonstrated in TOF_BANK2_1.INP. If rebin_with_dx_of
evaluates to a constant, then the observed data is re-binned to equal x-axis steps. For ob-
served data that is of unequal x-axis steps then re-binning provides a means of converting to
equal x-axis steps. Some points about rebin_with_dx_of:

• It changes the data.

• It uses all of the data and it uses it once.

• Errors are similar if the fit to the new data is similar.

• If a hat convolution is included in Ycalc then the fit is potentially the same.

rebin_with_dx_of creates a new x-axis with points determined by the rebin_with_dx_of equa-
tion, or,

x[i+1] = x[i] + rebin_with_dx_of

The new x-axis can be at x-axis intervals that are unequal. The position of the first x[i] value
defaults to the start of the original x-axis; this can be changed using rebin_start_x_at. Inten-
sities at the new x-axis are determined by the following integration:

Intensity at x[i] = Integrate Yobs from (x[i] + x[i-1])/2 to (x[i] + x[i+1])/2

Yobs is considered as line segments; integration is therefore simply the area under the line
segments. The integration implies convolution and rebin_with_dx_of can be thought of as a
resampling of the data. If rebin_with_dx_of is a constant, then the x-axis intervals are equal,
then the integration can be included in Ycalc using a hat function, or,

rebin_with_dx_of 0.02
hat 0.02

[Rp #] [Rs #]

Primary and secondary diffractometer radii in mm; defaults to 217mm.

[scale E]

Rietveld scale factor; can be applied to all phase types.

[scale_pks E]...

Scales phase peaks; the following defines a Lorentz-Polarisation correction:

Keywords 195

195 Keywords

scale_pks = (1 + Cos(c Deg)^2 Cos(2 Th)^2) / (Sin(Th)^2 Cos(Th));

See LP_Factor, Preferred_Orientation and Absorption_With_Sample_Thickness_mm_Intensity
macros.

[seed [#]]

Initializes the random number generator with a seed based on the computer clock. To initialize
the random number generator at the pre-processor stage then use #seed.

[site $site [x E] [y E] [z E]]...
[occ $atom E [beq E] [scale_occ E]]...
[num_posns #] [rand_xyz !E] [inter !E #]

Defines a site where $site is a User defined string used to identify the site. x, y, and z define
the fractional atomic coordinates, see also section 17.21. occ and beq defines the site occu-
pancy factor and the equivalent isotropic temperature factor. $atom corresponds to a valid
atom symbol or isotope contained in the file ATMSCAT.CPP for x-ray data and NEUTSCAT.CPP
for neutron_data. num_posns corresponds to the number of unique equivalent position gen-
erated from the space group; it is updated on termination of refinement. inter corresponds to
the sum of all GRS interactions which are a function of the site. The value of inter can repre-
sent the site electrostatic potential depending on the type of GRS interactions defined. A site
fully occupied by Calcium is written as:

site Al1 x 0 y 0 z 0.3521 occ Ca+2 1 beq 0.3

A site occupied by two cations is:

site Fe2 x 0.9283 y 0.25 z 0.9533 occ Fe+3 0.5 beq 0.25
 occ Al+3 0.5 beq 0.25

scale_occ is occ dependent and it scales occ. It and can be a function of H, K, L, D_spacing,
Xo and Th. The occ keyword remains single valued for QUANT purposes and thus cannot be a
function of H, K, L etc. The following is valid:

occ Pb+2 1
 prm q1 1 min 1e-6
 prm q2 1 min 1e-6
 prm q3 1 min 1e-6
 prm q4 1 min 1e-6
 scale_occ = q1 / D_spacing + 1 / (q2 H^2 + q3 K^2 + q4 L^2);

scale_occ is a child of occ, the keyword therefore needs to occur after the occ keyword. The
following two definitions will produce identical structure factors but different QUANT results:

site Pb occ Pb+2 1 beq 1
site Pb occ Pb+2 0.5 beq 1 scale_occ 2

scale_occ works with magnetic data, neutron data, x-ray data etc. but not PDF data.

Keywords 196

196 Keywords

Symmetry: The user is responsible for obeying symmetry. If not working in P1 then the Multi-
plicities_Sum macro could be used. The spherical_harmonics_hkl keyword can also be used,
for example:

spherical_harmonics_hkl sh sh_order 6
site Pb occ Pb+2 1 beq 1

prm q 1 min 1e-6
scale_occ = q sh;

[sites_distance N] | [sites_angle N] | [sites_flatten N [sites_flatten_tol !E]]...
[site_to_restrain $site [#ep [#n1 #n2 #n3]]]...

When used in equations the name N of sites_distance and sites_angle returns the distance in
Å between two sites and angle in degrees between three sites respectively. The sites consid-
ered are defined by site_to_restrain. N can be used in penalty equations to restrain bond
lengths. N of sites_flatten returns a restraint term that decreases as the sites become copla-
nar; it is defined as follows:

sites_flatten=
6

𝑛(𝑛 − 1)(𝑛 − 2)
∑ ∑ ∑ (|𝑏𝑖 x 𝑏𝑗 . 𝑏𝑘| − 𝑡𝑜𝑙)

2
, 𝑖𝑓 |𝑏𝑖 x 𝑏𝑗 . 𝑏𝑘| > 𝑡𝑜𝑙

𝑛

𝑘=𝑗+1

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

where tol corresponds to sites_flatten_tol, n corresponds to the number of sites defined by
site_to_restrain, b are Cartesian unit length vectors between the sites and the geometric cen-
ter of the sites.

#eq, #n1, #n2 and #n3 correspond to the site equivalent position and fractional offsets to add
to the sites. This is useful if the structure is already known and constraints are required, for
example, in the bond length output (see append_bond_lengths):

Zr1:0 O1:20 0 0 -1 2.08772
 O1:7 0 -1 0 2.08772 89.658
 O1:10 0 0 -1 2.08772 90.342 90.342
 O1:15 -1 0 0 2.08772 180.000 89.658 89.658
 O1:18 -1 0 0 2.08772 90.342 89.658 180.000 90.342

P1:0 O1:4 0 0 0 1.52473
 O1:8 0 0 0 1.52473 112.923
 O1:0 0 0 0 1.52473 112.923 112.923
 O2:0 0 0 0 1.59001 105.749 105.749 105.749

Example constraints using macros looks like:

Angle_Restrain(O1 P1 O1 8, 112, 112.92311, 0, 0.001)
Angle_Restrain(O1 18 -1 0 0 Zr1 O1 10 0 0 -1, 89, 89.65750, 0, 0.001)
Distance_Restrain(Zr1 O1 20 0 0 -1, 2.08, 2.08772, 0, 1)

BENZENE.INP demonstrates the use of the restraint macros Distance_Restrain, Angle_Re-
strain and Flatten. OpenGL viewing is recommended. Note, for more than ~6 sites then
sites_flatten becomes computationally expensive.

Keywords 197

197 Keywords

[sites_geometry $Name]...
[site_to_restrain $site [#ep [#n1 #n2 #n3]]]...

Defines a grouping of up to four sites; $Name is the name given to the grouping. The sites that
are part of the group is defined using site_to_restrain, for example:

sites_geometry some_name
load site_to_restrain { C1 C2 C3 C4 }

Three functions, Sites_Geometry_Distance($Name), Sites_Geometry_Angle($Name) and
Sites_Geometry_Dihedral_Angle($Name) can be used in equations to obtain the distance be-
tween sites C1 and C2, the angle between C1-C2-C3 and the dihedral angle formed between
the planes C1-C2-C3 and C2-C3-C4. The convention used are the same as for z-matrices, see
example SITES_GEOMETRY_1.INP.

If $Name contains only two sites, then only Sites_Geometry_Distance($Name) can be used.
Three sites defined additionally allows the use of Sites_Geometry_Angle($Name) and four
sites defined additionally allows the use of Sites_Geometry_Dihedral_Angle($Name).

Examples SITES_GEOMETRY_1.INP And SITES_GEOMETRY_2.INP demonstartes the use of
sites_geometry.

[siv_s1_s2 # #]

Defines the s1 and s2 integration limits for the spherical interaction volume of the GRS series.

[smooth #num_pts_left_right]

Performs a Savitzky-Golay smoothing on the observed data. The smoothing encompasses (2
* #num_pts_left_right + 1) points.

[spherical_harmonics_hkl $name]...
[sh_Cij_prm $Yij E]...
[sh_alpha !E]
[sh_order #]

Defines a hkl dependent symmetrized spherical harmonics series (see section 17.23.1) with a
name of $name. When $name is used in equations, it returns the value of the associated
spherical-harmonics series.

sh_Cij_prm is the spherical harmonics coefficients which can be defined by the User, or, al-
ternatively if there are no coefficients defined then the sh_Cij_prm parameters are generated.
Only the coefficients allowed by the selection rules of the point group are generated (Jä-
rvinen, 1993). At the end of refinement, the generated sh_Cij_prm parameters are appended
to sh_order. This allows for control over the sh_Cij_prm parameters in subsequent refine-
ments. $Yij corresponds to valid symmetrized harmonics that has survived symmetrization. It
is internally generated when there are no sh_Cij_prm parameters defined by the User.

Keywords 198

198 Keywords

sh_alpha corresponds to the angle in degrees between the polar axis and the scattering vec-
tor; sh_alpha defaults to zero degrees which is required for symmetric reflection as is the case
for Bragg-Brentano geometry.

sh_order corresponds to the order of the spherical harmonic series which are even numbers
ranging from 2 to 8 for non-cubic and from 2 to 10 for cubic systems.

The PO_Spherical_Harmonics macro simplifies the use of spherical_harmonics_hkl. CLAY.INP
demonstrates the use of spherical_harmonics_hkl for describing anisotropic peak shapes.

[stacked_hats_conv [whole_hat E [hat_height E]]...[half_hat E [hat_height E]...]...

Defines hat sizes for generating an aberration function comprising a summation of hats.
whole_hat defines a hat with an x-axis extent of whole_hat/2. half_hat defines a hat with an
x-axis range of half_hat to zero if half_hat<0; or zero to half_hat if half_hat> 0. hat_height de-
fines the height of the hat; it defaults to 1. stacked_hats is used for example to describe tube
tails using the Tube_Tails macro.

[start_X !E] [finish_X !E]

Defines the start and finish x-axis region to fit to.

[str | dummy_str]...

Defines a new structure node.

[str_hkl_angle N #h #k #l]...

Defines a parameter name N and a vector normal to the plane defined by h, k and l. When the
parameter name is used in an equation, it returns angles (in radians) between itself and the
normal to the planes defined by hkls; see the Preferred_Orientation and PO_Two_Directions
macros.

[suspend_writing_to_log_file #1]

When num_runs > 0, then, by default, output to TOPAS.LOG (or TC.LOG if running TC.EXE) is sus-
pended after the first run (Run_Number == 0). suspend_writing_to_log_file changes this be-
haviour.

[temperature !E]...
[move_to_the_next_temperature_regardless_of_the_change_in_rwp]
[save_values_as_best_after_randomization]
[use_best_values]

A temperature regime has no affect unless the reserved parameter T is used in val_on_con-
tinue attributes, or, if the temperature dependent keywords rand_xyz or randomize_on_errors
are used. randomize_on_errors automatically determine parameter displacements without
the need for rand_xyz or val_on_continue. It performs well on a wide range of problems. The
reserved parameter T returns the current temperature. The first temperature defined be-
comes the starting temperature; subsequent temperature(s) become the current

Keywords 199

199 Keywords

temperature. If 𝜒0
2 increases relative to a previous cycle, then the temperature is advanced to

the next temperature. If 𝜒0
2 decreases relative to previous temperatures of lesser values, then

the current temperature is rewound to a previous temperature such that its previous is of a
greater value. move_to_the_next_temperature_regardless_of_the_change_in_rwp forces the
refinement to move to the next temperature regardless of the change in Rwp from the previ-
ous temperature. save_values_as_best_after_randomization saves the current set of param-
eters and gives them the status of “best solution”. Note, this does not change the global “best
solution” which is saved at the end of refinement. use_best_values replaces the current set of
parameters with those marked as “best solution”. The temperature regime defined in the
macro Auto_T is sufficient for most problems. A typical temperature regime starts with a high
value and then a series of annealing temperatures, for example:

temperature 2
move_to_the_next_temperature_regardless_of_the_change_in_rwp

temperature 1 temperature 1 temperature 1

If the current temperature is the last one defined (the fourth one), and 𝜒0
2 decreased relative

to the second and third temperatures, then the current temperature is set to the second tem-
perature. The current temperature can be used in all equations using the reserved parameter
T, for example:

x @ 0.123 val_on_continue = Val + T Rand(-.1, .1)

The following temperature regime will allow parameters to randomly walk for the first temper-
ature. At the second temperature the parameters are reset to those that gave the "best solu-
tion".

temperature 1 temperature 1 use_best_values
temperature 1 temperature 1 use_best_values
temperature 1
temperature 10
 save_values_as_best_after_randomization
 move_to_the_next_temperature_regardless_of_the_change_in_rwp

Note, that when a "best solution" is encountered the temperature is rewound to a position
where the temperature decreased. For example, if the Rwp dropped at lines 2 to 5 then the next
temperature will be set to "line 1". The following temperature regime will continuously use the
"best solution" before randomisation; it has a tendency to remain in a false minimum:

temperature 1 use_best_values

[th2_offset E]...

Used for applying 2 corrections to phase peaks. The following applies a sample displacement
correction:

th2_offset = -2 Rad (c) Cos(Th) / Rs;

th2_offset is used for example in the Zero_Error and Specimen_Displacement macros.

Keywords 200

200 Keywords

[user_defined_convolution E min E max E]...

User defined convolutions are convoluted into phase peaks and can be a function of X. The
min/max equations are mandatory, they define the x-axis extents of the user_defined_convo-
lution where min ≤ 0 and max ≥ 0. For example, a sinc function can be convoluted into phase
peaks (example AU111.INP) as follows:

str ...
prm k 10 min 0.001 max 100
user_defined_convolution = If(Abs(X) < 10^(-10), 1, (Sin(k X) /(k X))^2);

min -3 max 3

[use_tube_dispersion_coefficients]

Forces the use of Laboratory tube anomalous dispersion coefficients, see section 17.3.

[verbose #1]...

A value of 1 instructs the kernel to output in a verbose manner. A value of 0 reduces kernel
output such that text output is initiated at the end of a refinement cycle. A value of -1 reduces
kernel output such that text output is initiated every second and only Rwp values at the end of
a refinement cycle is kept. The Simulated_Annealing_1 macro has verbose set to -1; this en-
sures that long simulated annealing runs do not exhaust memory due to saving Rwp values in
text output buffers.

[view_structure]

Informs a driver GUI to display the structure.

[weighting !E [recal_weighting_on_iter]]

Used for calculating the xdd dependent weighting function in 𝜒0
2. Can be a function of the re-

served parameter names X, Yobs, Ycalc and SigmaYobs. The default is as follows:

weighting = 1 / Max(Yobs, 1);

In cases where weighting is a function of Ycalc then recal_weighting_on_iter can be used to
recalculate the weighting at the start of refinement iterations. Otherwise the weighting is re-
calculated at the start of each refinement cycle. Note that some goodness of fit indicators
such as r_wp are a function of weighting, see Table 4-2.

[x_calculation_step !E]

Calculation step used in the generation of phase peaks and fit_obj’s. Peak_Calculation_Step is
the actual step size used. For an x-axis with equidistant steps and x_calculation_step not de-
fined then:

Peak_Calculation_Step = “Observed data step size” / convolution_step

otherwise

Peak_Calculation_Step = x_calculation_step / convolution_step

Keywords 201

201 Keywords

x_calculation_step can be a function of Xo and Th. In some situations, it may be computation-
ally efficient to write x_calculation_step in terms of the function Yobs_dx_at and the reserved
parameter Xo. It is also mandatory to define x_calculation_step for data with unequal x-axis
steps (*.XY or *.XYE data files). Example usage:

x_calculation_step 0.01
x_calculation_step = 0.02 (1 + Tan(Th));
x_calculation_step = Yobs_dx_at(Xo);

[xdd $file [{ $data }] [range #] [xye_format] [gsas_format] [fullprof_format]]...
[gui_reload]
[gui_ignore]

Defines the start of xdd dependent keywords and the file containing the observed data.
{$data} allow for insertion of ASCII data directly into the INP file. range applies to Bruker AXS
*.RAW data files; in multi-range files it defines the range to be refined with the first range
starting at 1 (the default). xye_format (see section 17.25 as well) signals the loading of columns
of x, y and error values. gsas_format and fullprof_format signals the loading of GSAS and Full-
Prof file formats. The following will refine on the first range in the data file pbso4.raw:

xdd pbso4.raw

The following will refine on the third range:

xdd pbso4.raw range 3

To read data directly from an INP file, the following can be used:

xdd {
1 1 10 ‘ start, step and finish (equidistant data)
1 2 3 4 5 6 7 8 9 10

}

xdd {

_xy ‘ switch indicating x-y format
0.1 1 0.2 2 ...

}

When in Launch mode; data files by default are not reloaded if already loaded. gui_reload
forces the reload of the data file. Data files are loaded/reloaded into the GUI under the follow-
ing circumstances:

• The data file is not loaded into the GUI

• Any of the following keywords have been used at the xdd level:

gui_reload, rebin_with_dx_of, smooth, yobs_eqn, yobs_to_xo_posn_yobs

gui_reload can be used in cases where the data file has been changed by a process not listed.
gui_ignore informs the GUI to ignore the xdd data file; Ycalc, difference and other items asso-
ciated with the data file is not retrieved from the Kernel.

Keywords 202

202 Keywords

 [xdd_out $file [append]]...

Used for writing xdd dependent details to file. The out_eqn can contain the reserved parame-
ter names of X, Yobs, Ycalc and SigmaYobs. See out for a description of out_record. The
Out_Yobs_Ycalc_and_Difference macro is a good example of using xdd_out.

[xdd_scr $file] ...
[dont_merge_equivalent_reflections]
[dont_merge_Friedel_pairs]
[ignore_differences_in_Friedel_pairs]
[str]...

[auto_scale !E]
[i_on_error_ratio_tolerance #]
[num_highest_I_values_to_keep #num]

xdd_scr defines single crystal data from the file $file. The file can have extensions of *.HKL
for ShelX HKL4 format or *.SCR for SCR format. All xdd and str keywords that are not depend-
ent on powder data can be used by xdd_scr. Single crystal data is internally stored in 2 versus
Fo

2 format; this allows the use of start_X, finish_X and exclude keywords; a lam definition is
required.

dont_merge_equivalent_reflections prevent merging of equivalent reflections, see also sec-
tion 17.3.3. dont_merge_Friedel_pairs prevent merging of Friedel pairs. ignore_differ-
ences_in_Friedel_pairs force the use of Eq. (17-12) for calculating F2. auto_scale rewrites the
scale parameter in terms of F2

; this eliminates the need for the scale parameter. The value
determined for auto_scale is updated at the end of refinement. i_on_error_ratio_tolerance fil-
ters out hkl’s that does not meet the condition:

|Fo| > i_on_error_ratio_tolerance |Sigma(Fo)|

num_highest_I_values_to_keep removes all hkl’s except for #num hkl’s with the highest Fo val-
ues. An example input segment for single crystal data refinement is as follows:

xdd_scr ylidm.hkl
MoKa2(0.001)
finish_X 35
weighting = 1 / (Sin(X Deg / 2) Max(1, Yobs));
STR(P212121)
 a 5.9636
 b 9.0390
 c 18.3955
 scale @ 1.6039731906
 i_on_error_ratio_tolerance 4
 site S1 x @ 0.8090 y @ 0.1805 z @ 0.7402 occ S 1 beq 2
 site O1 x @ 0.0901 y @ 0.8151 z @ 0.2234 occ O 1 beq 2
 ...

The SCR format is white space delimited and consists of entries of h, k, l, m, d, 2, Fo
2 which is

the format outputted by the Create_hklm_d_Th2_Ip_file macro.

Keywords 203

203 Keywords

[xo_Is]...
[xo E I E]...

Defines a phase type that uses x-axis space for generating peak positions, see example
XOIS.INP. xo corresponds to the peak position and I is the intensity parameter before applying
scale_pks equations.

[yobs_eqn !N E min E max E del E]

Observed data is created via an equation; useful for approximating functions. The name !N
given to the equation is used for identifying the plot in the GUI.

[yobs_to_xo_posn_yobs !E]

At the start of refinement, yobs_to_xo_posn_yobs decomposes an X-ray diffraction pattern
into a new pattern comprising at most one data point per hkl. Fitting to the decomposed pat-
tern in a normal Rietveld refinement manner is then possible due to the ability to refine data
of unequal x-axis step sizes. This normal Rietveld manner of fitting is important in structure
solution from simulated annealing as the background can still be refined and the problem of
peak overlap avoided. These new data points are not extracted intensities and thus the prob-
lem of peak overlap, as occurs in intensity extraction, is avoided. The much smaller number of
data points in the new diffraction pattern can greatly improve speed in structure solution; in
otherwords the calculation time in synthesizing the diffraction pattern becomes close to that
of when dealing with single crystal data. If the distance between two hkls is less than the value
of yobs_to_xo_posn_yobs then the proposed data point at one of these hkls is discarded.
Thus, the final decomposed pattern may in fact have less data points than hkls. A reasonable
value for yobs_to_xo_posn_yobs is Peak_Calculation_Step, or,

yobs_to_xo_posn_yobs = Peak_Calculation_Step;

yobs_to_xo_posn_yobs can be a function of the reserved parameter X with X being the value
of the x-axis at the hkl. For refinement stability, all peak shape, zero error and lattice parame-
ters should be determined and then fixed before using yobs_to_xo_posn_yobs. Also, if the
original diffraction pattern is noisy then it may be best to smooth it using smooth or re-binned
using rebin_with_dx_of. Alternatively, a calculated pattern could be used as input into the
yobs_to_xo_posn_yobs. Note that structure solution can be speed-up by preventing graphical
output or by increasing the Graphics Response Time in the GUI. See examples CIME-DECOM-
POSE.INP and PBSO4-DECOMPOSE.INP.

18.3 ... Keywords to simplify User input

18.3.1 The "load { }" keyword and attribute equations

"load { }" can be used to simplify User input. It allows the loading of keywords of the same type by
typing the keywords once, for example, exclude in the following input segment:

xdd exclude 20 22 exclude 32 35 exclude 45 47

can be rewritten using "load { }" as follows:

Keywords 204

204 Keywords

xdd load exclude { 20 22 32 35 45 47 }

This input can be further simplified using the Exclude macro:

xdd Exclude { 20 22 32 35 45 47 }

In some cases, attribute equations are loaded by the parameter itself. For example, in the follow-
ing:

prm t 0.01 val_on_continue = Rand(-Pi, Pi); min 0.4 max 0.5

the prm will load the attribute. But, in the following:

load prm val_on_continue min max { t 0.01 = Rand(-Pi, Pi); 0.4 0.5 }

load will load the attributes. The following is valid:

load sh_Cij_prm {
 y00 !sh_c00 1
 y20 sh_c20 0.26202642 min 0 max 1
 y40 sh_c40 0.06823548
 ...
}

In this case load does not contain min/max and the parameter will load its attributes. load how-
ever can contain attributes, for example:

load sh_Cij_prm min max { ‘ load loads the attributes
 y00 !sh_c00 1 0 1
 y20 sh_c20 0.26202642 0 1
 y40 sh_c40 0.06823548 0 1
 ...
}

18.3.2 The "move_to $keyword" keyword

move_to provides a means of entering parameter attributes without having to first load the pa-
rameter, see Keep_Atom_Within_Box macro. The site dependent ADPs_Keep_PD macro defines

min/max limits; here's part of that macro:

move_to u12
min = -Sqrt(Get(u11) Get(u22));
max = Sqrt(Get(u11) Get(u22));

$keyword of move_to can be any keyword and not just a parameter keyword.

18.3.3 The "for xdds { }" and "for strs { }" constructs

The “for xdds { }” and "for strs { }" constructs simplify the construction of input files when there
are multiple diffraction patterns with similar structures, see example QUARTZ2_FPA.INP. For ex-
ample, two diffraction patterns with the same structures can be composed as follows:

Keywords 205

205 Keywords

xdd ... ‘ first xdd
 bkg ...
 th2_offset ...

‘ xdd dependent, not common to the xdd's

 str ... ‘ first str
 scale ... ‘ str dependent, not common to the str's
xdd ... ‘ second xdd
 bkg...
 th2_offset ...

‘ xdd dependent, not common to the xdd's

 str ... ‘ second str
 scale ... ‘ str dependent, not common to the str's
for xdds {
 Slit_Width(0.2)
 CuKa2(0.0001)

‘ xdd dependent, common to the xdd's

 for strs { ... } ‘ str dependent, common to the xdd's
 for strs 1 to 1 {
 space_group p1
 site ...

‘ str dependent, specific to the first str

 }
}

The effect of using parameter names of @ in for constructs is to give unique parameter names to
the parameters iterated over; the output file would contain the parameter value corresponding
to the last “for xdds” or “for strs” iteration. Parameters should therefore not be given the @ name
within for constructs.

Macros and Include files 206

206 Macros and Include files

19. MACROS AND INCLUDE FILES

Macros appearing in INP files are expanded by the pre-processor. The pre-processor comprises
directives of two types, global types and types that are invoked on macro expansion; directives
begin with the character # and are:

Directives with global scope:

macro $user_defined_macro_name { ... }

#include $user_defined_macro_file_name

#delete_macros { $macros_to_be_deleted }

#define, #undef, #if, #ifdef, #ifndef, #else, #elseif, #endif, #prm

#seed – initializes the random number generator at the pre-processor stage.

Directives invoked on macro expansion:

#m_if, #m_ifarg, #m_elseif, #m_else, #m_endif

#m_code, #m_eqn, #m_code_refine, #m_one_word

#m_argu, #m_first_word, #m_unique_not_refine

19.1 ... The macro directive

Macros are defined using the macro directive; here's an example:

macro Cubic(cv) { a cv b = Get(a); c = Get(a); }

Macros can have multiple arguments or none; the Cubic macro above has one argument; here are
some example uses of Cubic:

Cubic(4.50671)
Cubic(a_lp 4.50671 min 4.49671 max 4.52671)
Cubic(!a_lp 4.50671)

The first instance defines the a, b and c lattice parameters without a parameter name. The sec-
ond defines the lattice parameters with a name indicating refinement of the a_lp parameter. In
the third example, the a_lp parameter is preceded by the character !. This indicates that the a_lp

parameter is not to be refined; it can however be used in equations. The definition of macros need
not precede its use. For example, in the segment:

xdd...
Emission_Profile ‘ this is expanded
macro Emission_Profile { CuKa2(0.001) }

Even though the macro Emission_Profile has been defined after its use, Emission_Profile is ex-
panded to "CuKa2(0.001)".

Macro names need not be unique; in cases where more than one macro have the same name then
the actual macro expanded is determined by the number of arguments. For example, if the macro
Slit_Width(0.1) is used then the Slit_Width(v) macro is expanded. On the other hand if the macro

Macros and Include files 207

207 Macros and Include files

Slit_Width(sw, .1) is used then the Slit_Width(c, v) macro is expanded. Macros can also expand to
macro names. For example, the macro Crystallite_Size expands to CS and since CS is a macro then
the CS macro will be expanded.

19.1.1 Directives with global scope

#include $user_defined_macro_file_name

Include files are used to group macros. The file TOPAS.INC contains standard macros; its a
good place to view examples. Text within include files are inserted at the position of the #in-
clude directive, thus the following:

#include "my include file.inc"

inserts the text within "my include file.inc" at the position of the #include directive. The stand-
ard macro file TOPAS.INC is always included by default.

#delete_macros { $macros_to_be_deleted }

Macros can be deleted using #delete_macros, for example the following

#delete_macros { LP_Factor SW ZE }

will delete previously defined macors, irrespective of the number of arguments, with the
names LP_Factor, SW and ZE.

#define, #undef, #ifdef, #ifndef, #else, #endif

The #define and #undef directives works similar-to the c pre-processor directives of the
same name. #define and #undef is typically used with #ifdef, #else, #endif directives to con-
trol macro expansion in INP files. For example, the following:

#ifdef STANDARD_MACROS
xdd ...

#endif

will expand to contain the xdd keyword if STANDARD_MACROS has been previously defined
using a #define directive. The following will also expand to contain the xdd keyword if STAND-
ARD_MACROS has not been defined using a #define directive,

#ifdef !STANDARD_MACROS
 #define STANDARD_MACROS
 xdd ...
#endif

or,

#ifndef STANDARD_MACROS
 #define STANDARD_MACROS
 xdd ...
#endif

Macros and Include files 208

208 Macros and Include files

Note the use of the ‘!’ character placed before STANDARD_MACROS which means if STAND-
ARD_MACROS is not defined.

19.1.2 Pre-processor equations and #prm, #if, #elseif, #out

Pre-processor parameters, called hash parameters, are defined using the #prm directive. #prm’s
can be a function of other #prm’s and they can be used in #if, #elseif, #m_if and #m_elseif pre-
processor statements. #prm’s are only evaluated at the pre-processor stage of loading INP files
(see TEST_EXAMPLES\HASH_PRM.INP); they are therefore unknown to the kernel and are totally
separate to parameters defined using prm. Pre-processed output can be found in the TOPAS.LOG
file, when running TA.EXE, or, TC.LOG when running TC.EXE.

#out and #m_out allows pre-processor #prm’s values, which can be strings or numbers, to be
placed into the pre-processed text. For example, the following:

#prm a = Constant(Rand(0,1));
#out a

will output a random number between 0 and 1 into the pre-processed file at the position of #out.
INP files can therefore be manipulated with #prm’s and #if statements with a means of identifying
the manipulation carried out. The following:

macro Ex1(a) {
#m_if a == "b";

Yes b
#m_elseif a == “c”;

Yes c
#m_endif

}
Ex1("b")

expands to:

Yes b

In the following:

#prm ran = Constant(Rand(0,1));
#if ran < 0.5;

view_structure
#endif
#if ran < 0.5;

view_structure
#endif
#if ran < 0.5;

view_structure
#endif

each call to ‘ran’ in the #if statements would return the same value because of the use of Con-
stant. More complicated INP file manipulation is shown in the following:

#prm space_group_number = 4;

Macros and Include files 209

209 Macros and Include files

#if And(space_group_number >= 75, space_group_number <= 142);
...

#elseif And(space_group_number >= 16, space_group_number <= 74);
...

#endif

19.1.3 Directives invoked on macro expansion

#m_if, #m_ifarg, #m_elseif, #m_else, #m_endif, #m_if, #m_out

These are conditional directives that are invoked on macro expansion. #m_ifarg operates on two
statements immediately following its use; the first must refer to a macro argument and the sec-
ond can be any of the following: #m_code, #m_eqn, #m_code_refine, #m_one_word and “some
string”. #m_ifarg evaluates to true according to the rules of Table 19-1.

Table 19-1. #m_ifarg syntax and meaning.

 Evaluates to true if the following is true

#m_ifarg c #m_code If the macro argument c has a letter or the character ! as the
first character and if it is not an equation.

#m_ifarg c #m_eqn If the macro argument c is an equation.

#m_ifarg c #m_code_refine If the macro argument c has a letter as the first character and
if it is not an equation.

#m_ifarg c “some_string” If the macro argument c == “some_string”.

#m_ifarg v #m_one_word If the macro argument v consists of one word.

#m_argu, #m_first_word, #m_unique_not_refine

These operate on one macro argument with the intention of changing the value of the argument
according to the rules of Table 19-2.

Table 19-2. Directives that change the value of a macro argument.

#m_argu c Changes the macro argument c to a unique parameter name if it
has @ as the first character.

#m_unique_not_refine c Changes the macro argument c to a unique parameter name that
is not to be refined.

#m_first_word $v Replace the string macro argument $v with the first word occur-
ring in $v.

19.1.4 Defining unique parameters within macros

#m_unique $string assigns a unique parameter name to $string within a macro. This allows new
unique parameters to be defined within macros whilst avoiding name clashes. In the example:

macro Some_macro(v) { prm #m_unique a = Cos(Th); : v }

Macros and Include files 210

210 Macros and Include files

'a' is assigned a unique parameter name and it has the scope of the macro body text. The Ro-
bust_Refinement and TCHZ_Peak_Type macros are good examples of its use, where for example,
the former is defined as:

macro Robust_Refinement {
‘ Robust refinement algorithm
prm #m_unique test = Get(r_exp);
prm #m_unique N = 1 / test^2;
prm #m_unique p0 = 0.40007404;
prm #m_unique p1 = -2.5949286;
prm #m_unique p2 = 4.3513542;
prm #m_unique p3 = -1.7400101;
prm #m_unique p4 = 3.6140845e-1;
prm #m_unique p5 = -4.45247609e-2;
prm #m_unique p6 = 3.5986364e-3;
prm #m_unique p7 = -1.8328008e-4;
prm #m_unique p8 = 5.7937184e-6;
prm #m_unique p9 = -1.035303e-7;
prm #m_unique p10 = 7.9903166e-10;
prm #m_unique t = (Yobs - Ycalc) / SigmaYobs;
weighting = If(t < 0.8, N / Max(SigmaYobs^2, 1), If(t < 21, N

((((((((((p10 t + p9) t + p8) t + p7) t + p6) t + p5) t + p4) t + p3)
t + p2) t + p1) t + p0) / (Yobs - Ycalc)^2, N (2.0131 Ln(t) + 3.9183)
/ (Yobs - Ycalc)^2));

recal_weighting_on_iter
}

19.1.5 Superfluous parentheses and the '&' Type for macros

The pre-processor is an un-typed language meaning that it knows nothing about the type of text
passed to macro arguments. This has great flexibility but care must be take; for example, the
following:

macro divide(a, b) { a / b }
prm e = divide(a + b, c - d);

expands to the unintended result of:

prm e = a + b / c - d;

The writer of the macro could solve this problem by rewriting the macro with parentheses:

macro divide(a, b) { (a) / (b) }

Alternatively, macro arguments can be prefixed with the & character signalling that the argument
is of an equation type, for example:

macro divide(& a, & b) { a / b }
prm e = divide(a + b, c - d);

The program inspects &-type arguments and parentheses are included as needed. This results in
the correct expansion of:

Macros and Include files 211

211 Macros and Include files

prm e = (a + b) / (c - d);

Even with the use of &-types for arguments, the following:

macro divide(& a, & b) { a / b }
prm e = divide(a + b, c - d)^2;

expands to the unintended:

prm e = (a + b) / (c - d)^2;

The writer of the macro could again rewrite the macro to include more parentheses:

macro divide(a, b) { ((a) / (b)) }

Or, define the expansion of the macro itself to have an &-type by placing the & character before
the macro name itself:

macro & divide(& a, & b) { a / b }

Expansion of prm e = divide(a + b, c - d)^2 now becomes the intended:

prm e = ((a + b) / (c - d))^2;

With the use of the &-type, macros such as Ramp defined in Version 4 as:

macro Ramp(x1, x2, n) { ((x1)+((x2)-(x1)) Mod(Cycle_Iter,(n))/((n)-1)) }

can be written with less parentheses as follows:

macro & Ramp(& x1,& x2,& n) { x1 + (x2 - x1) Mod(Cycle_Iter, n) / (n-1) }

19.2 ... Overview

The file TOPAS.INC is included in INP files by default; it contains commonly used standard macros.
The meaning of the macro arguments in TOPAS.INC can be readily determined from the following
conventions:

Arguments called "c" correspond to a parameter name.
Arguments called "v" correspond to a parameter value.
Arguments called "cv" correspond to a parameter name and/or value.

For example, the macro Cubic(cv) requires a value and/or a parameter name as an argument, i.e.

Cubic(a_lp 10.604)
Cubic(10.604)
Cubic(@ 10.604 min 10.59 max 10.61)

Macros and Include files 212

212 Macros and Include files

Here are examples for the Slit_Width macro:

SW(@, 0.1)
SW(sw, 0.1 min = Val-.02; max = Val+.02;)
SW((ap+bp)/cp, 0) ‘ where ap, bp and cp are parameters defined elsewhere

19.2.1 xdd macros

RAW(path_no_ext)
RAW(path_no_ext, range_num)
DAT(path_no_ext)
XDD(path_no_ext)
XY(path_no_ext, calc_step)
XYE(path_ext)
SCR(path_no_ext)
SHELX_HKL4(path_no_ext)

19.2.2 Lattice parameters

Cubic(cv)
Tetragonal(a_cv, c_cv)
Hexagonal(a_cv, c_cv)
Rhombohedral(a_cv, al_cv)

19.2.3 Emission profile macros

No_Th_Dependence
CuKa1(yminymax)
CuK1sharp(yminymax)
CuKa2_analyt(yminymax)
CuKa2(yminymax)
CuKa4_Holzer(yminymax)
CuKa5(yminymax)
CuKa5_Berger(yminymax)
CoKa3(yminymax)
CoKa7_Holzer(yminymax)
CrKa7_Holzer(yminymax)

FeKa7_Holzer(yminymax)
MnKa7_Holzer(yminymax)
NiKa5_Holzer(yminymax)
MoKa2(yminymax)
CuKb4_Holzer(yminymax)
CoKb6_Holzer(yminymax)
CrKb5_Holzer(yminymax)
FeKb4_Holzer(yminymax)
MnKb5_Holzer(yminymax)
NiKb4_Holzer(yminymax)

19.2.4 Instrument and instrument convolutions

Radius(rp, rs)

Primary and secondary instrument radii (mm). For most diffractometers rp = rs.

Specimen_Tilt(c, v)

Specimen tilt in mm.

Slit_Width(c, v) or SW(c, v)

Aperture of the receiving slit in the equatorial plane in mm.

Sample_Thickness(dc, dv)

Sample thickness in mm in the direction of the scattering vector.

Macros and Include files 213

213 Macros and Include files

Divergence(c, v)

Horizontal divergence of the beam in degrees in the equatorial plane.

Variable_Divergence(c, v)
Variable_Divergence_Shape(c, v)
Variable_Divergence_Intensity

Constant illuminated sample length in mm for variable slits (i.e. variable beam divergence).
This Variable_Divergence macro applies both a shape and intensity correction.

Simple_Axial_Model(c, v)

Receiving slit length mm for describing peak asymmetry due to axial divergence.

Full_Axial_Model(filament_cv, sample_cv, detector_cv, psol_cv, ssol_cv)

Accurate model for describing peak asymmetry due to axial divergence of the beam.

[filament_cv]: Tube filament length in [mm].

[sample_cv]: Sample length in axial direction in [mm].

[detector_cv]: Length of the detector (= receiving) slit in [mm].

[psol_cv, ssol_cv]: Aperture of the primary and secondary Soller slit in [°].

Finger_et_al(s2, h2)

Finger et al., 1994. model for describing peak asymmetry due to axial divergence.

[s2, h2]: Sample length, receiving slit length.

Tube_Tails(source_width_c, source_width_v, z1_c, z1_v, z2_c, z2_v, 1z2_h_c, z1z2_h_v)

Model for description of tube tails (Bergmann, 2000).

[source_width_c, source_width_v]: Tube filament width in [mm].

[z1_c, z1_v]: Effective width of tube tails in the equatorial plane perpendicular to the X-ray
beam - negative z-direction [mm].

[z2_c, z2_v]: Effective width of tube tails in the equatorial plane perpendicular to the X-ray
beam - positive z-direction [mm].

[z1_z2_h_c, z1_z2_h_v]: Fractional height of the tube tails relative to the main beam.

UVW(u, uv, v, vv, w, wv)

Cagliotti relation (Cagliotti et al., 1958).

[u, v, w]: Parameter names.

[uv, vv, wv]: Halfwidth value.

Macros and Include files 214

214 Macros and Include files

19.2.5 Phase peak_type's

PV_Peak_Type(ha, hav, hb, hbv, hc, hcv, lora, lorav, lorb, lorbv, lorc, lorcv)
TCHZ_Peak_Type(u, uv, v, vv, w, wv, x, xv, y, yv, z, zv)
PVII_Peak_Type(ha, hav, hb, hbv, hc, hcv, ma, mav, mb, mbv, mc, mcv)

Pseudo-Voigt, TCHZ pseudo-Voigt and PearsonVII functions. For the definition of the func-
tions and function parameters refer to section 5.2.

19.2.6 Quantitative Analysis

Apply_Brindley_Spherical_R_PD(R, PD)

Applies the Brindley correction for quantitative analysis (Brindley, 1945).

MVW(m_v, v_v, w_v)

Returns cell mass, cell volume and weight percent.

19.2.7 2Th Corrections

Zero_Error or ZE(c, v)

Zero point error.

Specimen_Displacement(c, v) or SD(c, v)

Specimen displacement error.

19.2.8 Intensity Corrections

LP_Factor(c, v)

Lorentz and Lorentz-Polarisation factor.

[c, v]: Monochromator angle in [°2]

For unpolarized radiation v is 90 (e.g. X-ray diffractometers without any monochromator), for
fully polarized radiation v is 0 (e.g. synchrotron radiation).

Values for most common monochromators (Cu radiation) are:

Ge : 27.3°
Graphite : 26.4°
Quartz : 26.6°

Lorentz_Factor

Lorentz factor for fixed wavelength neutron data.

Surface_Roughness_Pitschke_et_al(a1c, a1v, a2c, a2v)
Surface_Roughness_Suortti(a1c, a1v, a2c, a2v)

Suortti and Pitschke et al. intensity corrections each with two parameters a1 and a2.

Preferred_Orientation(c, v, ang, hkl) or PO(c, v, ang, hkl)

Preferred orientation correction based on March (1932).

[c, v]: March parameter value.

Macros and Include files 215

215 Macros and Include files

[ang, hkl]: Lattice direction.

PO_Two_Directions(c1, v1, ang1, hkl1, c2, v2, ang2, hkl2, w1c, w1v)

Preferred orientation correction based on March (1932) considering two preferred orientation
directions.

[c1, v1]: March parameter value for the first preferred orientation direction.

[ang1, hkl1]: Parameter name and lattice plane for the first preferred orientation direction.

[c2, v2]: March parameter value for the second preferred orientation direction.

[ang2, hkl2]: Lattice direction for the second preferred orientation direction.

[w1c, w1v]: Fraction of crystals oriented into first preferred orientation direction.

PO_Spherical_Harmonics(sh, order)

Preferred orientation correction based on spherical harmonics according to Järvinen (1993).

[(sh, order)]: Parameter name, spherical harmonics order.

19.2.9 Bondlength penalty functions

Anti_Bump(ton, s1, s2, ro, wby)
AI_Anti_Bump(s1, s2, ro, wby, num_cycle_iters), AI_Anti_Bump(s1, s2, ro, wby)

Applies a penalty function as a function of the distance between atoms. The closer the atoms
are the higher the penalty is.

[ton]: Sets to_N of box_interaction.

[s1, s2]: Sites.

[ro]: Distance.

[wby]: Relative weighting given to the penalty function.

For more details refer to box_interaction and ai_anti_bump.

Parabola_N(n1, n2, s1, s2, ro, wby)

Applies a penalty function as a function of the distance between atoms. The closer the atoms
are the higher the penalty is.

[n1]: The closest n1 number of atoms of type s2 is soft constrained to a distance ro away from
s1 .

[n2]: The closest n2 number of atoms of type s2 (excluding the closest n1 number of atoms of
type s2) is repelled from s1, for distances between s1 and s2 less than ro.

[s1, s2]: Sites.

[ro]: Distance.

[wby]: Relative weighting given to the penalty function.

Grs_Interaction(s1, s2, wqi, wqj, c, ro, n)

Penalty function applying the GRS series according to Coelho & Cheary (1997).

[s1, s2]: Sites.

Macros and Include files 216

216 Macros and Include files

[wqi, wqj]: Valence charge of the atoms.

[c]: Name of the GRS.

[ro]: Distance.

[n]: The exponent of the repulsion part of the Lennard-Jones potential.

For more details refer to grs_interaction.

Grs_No_Repulsion(s1, s2, wqi, wqj, c)

Used for calculating the Madelung constants.

[s1, s2]: Sites.

[wqi, wqj]: Valence charge of the atoms.

[c]: Name of the GRS.

Grs_BornMayer(s1, s2, wqi, wqj, c, ro, b)

Uses the GRS series with a Born-Mayer equation for the repulsion term.

[s1, s2]: Sites.

[wqi, wqj]: Valence charge of the atoms.

[c]: Name of the GRS.

[ro]: Mean distance.

[b]: b-constant for the repulsion part of the Born-Mayer potential.

Distance_Restrain(sites, t, t_calc, tol, wscale)
Angle_Restrain(sites, t, t_calc, tol, wscale)
Flatten(sites, t_calc, tol, wscale)
Distance_Restrain_Keep_Within(sites, r, wby, num_cycle_iters)
Distance_Restrain_Keep_Out(sites, r, wby, num_cycle_iters)

Applies penalties restraining distances and angles between sites. 'sites' must comprise two
sites for the distance restraints and three for the angle restraints. For Flatten, 'sites' must
contain more than three sites. wby is a scaling constant applied to the penalty.

Keep_Atom_Within_Box(size).

Applies a min/max constraints such that the present site cannot more outside of a box with a
length of 2*size.

19.2.10 Reporting macros

Create_2Th_Ip_file(file)

Creates a file with positions (2) and intensities.

Create_d_Ip_file(file)

Creates a file with positions (d) and intensities.

Macros and Include files 217

217 Macros and Include files

Create_hklm_d_Th2_Ip_file(file)

Creates a file with the following information for each peak: h, k, l, multiplicity, positions d and
2 and intensities.

Out_Yobs_Ycalc_and_Difference(file)

Outputs the x-axis, Yobs, Ycalc and difference.

Out_X_Yobs(file), Out_X_Ycalc(file), Out_X_Difference(file)

Outputs the x-axis, Yobs, Ycalc and difference to files.

Out_F2_Details(file), Out_A01_A11_B01_B11(file)

Outputs structure factor details, see section 17.3.2.

Out_FCF(file)

Outputs a CIF file representation of structure factor details suitable for generating Fourier
maps using ShelX..

Out_CIF_STR(file)

Outputs structure details in CIF format.

Absorption_With_Sample_Thickness_mm_Shape_Intensity(u, uv, d, dv)

Corrects the peak intensity for absorption effects.

[u, uv]: Parameter name, absorption coefficient in cm-1.

[d, dv]: Parameter name, sample thickness in [mm].

CS_L(c,v) or Crystallite_Size(c, v) or CS(c, v)

Applies a Lorentzian convolution with a FWHM that varies according to the relation lor_fwhm
= 0.1 Rad Lam / (c Cos(Th)).

[c, v]: Parameter name, crystallite size in [nm].

CS_G(c, v)

Applies a Gaussian convolution with a FWHM that varies according to the relation

gauss_fwhm = 0.1 Rad Lam / (c Cos(Th));

 [c, v]: Parameter name, crystallite size in [nm].

Strain_L(c, v) or Microstrain(c, v) or MS(c, v)

Applies a Lorentzian convolution with a FWHM that varies according to the relation lor_fwhm
= c Tan(Th).

Strain_G(c, v)

Applies a Gaussian convolution with a FWHM that varies according to the relation gauss_fwhm
= c Tan(Th).

LVol_FWHM_CS_G_L(k, lvol, kf, lvolf, csgc, csgv, cslc, cslv)

Calculates FWHM and IB (integral breadth) based volume-weighted column heights (LVol). For
details refer to section 17.7.

Macros and Include files 218

218 Macros and Include files

[k, lvol]: shape factor (fixed to 1), integral breadth based LVol.

[kf, lvolf]: shape factor (defaults to 0.89), FWHM based LVol.

[csgc, csgv]: Parameter name, Gaussian component.

[cslc, cslv]: Parameter name, Lorentzian component.

19.2.11 Neutron TOF

TOF_XYE(path, calc_step), TOF_GSAS(path, calc_step)

Includes the neutron_data keyword and the calculation step size.

TOF_LAM(w_ymin_on_ymax)

Defines a simple emission profile suitable for TOF data

TOF_x_axis_calibration(t0, t0v, t1, t1v, t2, t2v)

Writes the pk_xo equation in terms of the three calibration constants t0, t1, t2 converting d-
spacing to x-axis space.

TOF_Exponential(a0, a0v, a1, a1v, wexp, t1, lr)

An exponential convolution applied to the TOF peaks - see example TOF_BANK2_1.INP.

TOF_CS_L(c, v, t1), TOF_CS_G(c, v, t1)

Lorentzian and Gaussian components for crystallite size. t1 is the calibration constant appear-
ing in the argument of the macro TOF_x_axis_calibration.

TOF_PV(fwhm, fwhmv, lor, lorv, t1)

A pseudo-Voigt used to describe the instrumental broadening t1 is the calibration constant
appearing in the argument of the macro TOF_x_axis_calibration, see examples TOF_BAL-
ZAR_BR1.INP and TOF_BALZAR_SH1.INP.

19.2.12 Miscalleneous

Temperature_Regime

Defines a temperature regime. See the temperature keyword.

STR(sg)

Signals the start of structure information with a space group of sg.

Exclude

Defines excluded regions. See exclude.

Decompose(diff_toll)

Decompose a diffraction pattern comprising data points at peak positions only. Data points
closer than diff_toll to another data point is not included. Decompose also sets x_calcula-
tion_step to the value of diff_toll.

Macros and Include files 219

219 Macros and Include files

ADPs_Keep_PD

Mixture_LAC_1_on_cm(mlac)

Phase_Density_g_on_cm3(pd)

Phase_LAC_1_on_cm(u)

Gauss(xo, fwhm), Lorentzian(xo, fwhm)

An equation defines a unit area Gaussian or Lorentzian with a position of xo and a FWHM of
fwhm

Charge-flipping 220

220 Charge-flipping

20. CHARGE-FLIPPING

The charge-flipping method of Oszlányi & Süto (2004) has been implemented (Coelho, 2007) using
the keywords shown in Table 20-2. Also included is the use of the tangent formula (Hauptman &
Karle, 1956) within the iterative charge-flipping process. Equations appearing in charge-flipping
keywords can be functions of the items shown in Table 20-1. At the end of a charge flipping pro-
cess a file with the same name as that given by cf_hkl_file is created but with a *.FC extension.
Almost all charge-flipping keywords can be equations allowing for great flexibility in-regards to
changing resolution etc... on the fly. Table 20-3 lists charge-flipping examples found in the CF di-
rectory.

Table 20-1. Items that can be used in charge-flipping equations

Get(Aij)
Get(alpha_sum)
Get(density)
Get(cycles_since_last_best)
Get(d_squared_inverse)
Get(initial_phase)
Get(iters_since_last_best)
Get(F000)
Get(max_density)
Get(max_density_at_cycle_iter_0)
Get(num_reflections_above_d_min)
Get(phase_difference)
Get(r_factor_1), Get(r_factor_2)
Get(threshold)

These are updated internally each charge-flip-
ping iteration or cycle or when needed.

Reserved parameter names: Cycle_Iter, Cycle, Iter, D_spacing

Macros (see TOPAS.INC)

Ramp, Ramp_Clamp, Cycle_Ramp, Tangent, Restart_CF, Pick, Pick_Best

Out_for_cf(file) : Outputs the A matrix from a Pawley refinement for use in charge flipping; uses
cf_in_A_matrix. See example CF-CIME-PAWLEY.INP.

Table 20-2. Keywords that can be used in charge-flipping.

charge_flipping Default

 [a !E b !E c !E [al !E] [be !E] [ga !E] al = be = ga = 90
 [cf_hkl_file $file]
 [cf_in_A_matrix $file]
 [scale_Aij !E] Get(Aij)^2
 [break_cycle_if_true !E]
 [delete_observed_reflections !E]
 [extend_calculated_sphere_to !E]
 [f_atom_type $type f_atom_quantity !E]...
 [find_origin !E] 1

Charge-flipping 221

221 Charge-flipping

 [fraction_density_to_flip !E] 0.75
 [fraction_reflections_weak !E] 0
 [min_d !E] 0
 [min_grid_spacing !E]
 [neutron_data]
 [space_group $] P1

 [use_Fc]

Electron density perturbations

[flip_equation !E]
[flip_regime_2 !E]
[flip_regime_3 !E]
[histogram_match_scale_fwhm !E]

[hm_size_limit_in_fwhm !E] 1
[hm_covalent_fwhm !E] 1

[pick_atoms $atoms]...
[activate !E] 1
[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[omit !E]
[displace !E]
[insert !E]

[scale_density_below_threshold !E]
[symmetry_obey_0_to_1 !E]

Phase perturbations

 [add_to_phases_of_weak_reflections !E]
 [randomize_phases_on_new_cycle_by !E] 0
 [set_initial_phases_to $file]
 [modify_initial_phases !E]

[tangent_num_h_read !E]
 [tangent_num_k_read !E]
 [tangent_num_h_keep !E]
 [tangent_max_triplets_per_h !E] 30
 [tangent_min_triplets_per_h !E] 1
 [tangent_scale_difference_by !E] 1
 [tangent_tiny !E] 0.01

Miscellaneous

 [apply_exp_scale !E] 1
 [correct_for_atomic_scattering_factors !E] 1
 [correct_for_temperature_effects !E] 1
 [hkl_plane $hkl]...
 [randomize_initial_phases_by !E] Rand(-180,180)
 [scale_E !E] 1

Charge-flipping 222

222 Charge-flipping

 [scale_F !E] 1
 [scale_F000 !E] 0
 [scale_weak_reflections !E]
 [user_threshold !E]
 [verbose #] 1

GUI Related

 [add_to_cloud_N !E [add_to_cloud_when !E]]
 [pick_atoms_when !E]
 [view_cloud !E] 1

20.1 ... Charge-flipping usage

CF works well on data at good resolution (<1Å resolution). For data at poor resolution or for diffi-
cult structures then inclusion of the tangent formula can facilitate solution and sharpen electron
densities, see example CF-1A7Y.INP. Powder diffraction data usually fall under the poor resolu-
tion/data quality category and as such additional symmetry restraints using sym-
metry_obey_0_to_1 can sharpen electron densities. Example CF-ALVO4.INP demonstrates the use
of the tangent formula on powder data.

The choice and amount of perturbation necessary for finding a solution are important considera-
tions. Not enough perturbation leads to the system being trapped within a local parameter space;
too much perturbation may lead to a solution not being found and in addition contrast in R-factors
prior to and at convergence are diminished leading to difficult to identify solutions. Many of the
examples in the CF directory uses the Ramp macro to gradually vary control parameters, here are
some examples:

fraction_density_to_flip = Ramp(0.85, 0.8, 100);
fraction_reflections_weak = Ramp(0.5, 0, 100);
flip_regime_2 = Ramp(1, 0, 200);
flip_regime_3 = Ramp(0.25, 0.5, 200);
symmetry_obey_0_to_1 = Ramp(0.5, 1, 100);
tangent_scale_difference_by = Ramp(0, 1, 100);

Choosing control parameters in this manner gradually decreases perturbation allowing for solu-
tions to be found and identified. This is similar-to a simulated annealing process where tempera-
tures start at high values and then progressively lowered.

20.1.1 Perturbations

Perturbations can be categorized as being of either phase, structure factor intensity or electron
density perturbations as shown in Table 20-2. There are two built in flipping regimes, flip_re-
gime_2 and flip_regime_3, and one user defined regime flip_equation. Only one can be used and
they all modify the electron density. In the absence of a flipping regime the following is used where
 corresponds to the electron density threshold.

𝜌 = {
−𝜌 𝑓𝑜𝑟 𝜌 < 𝛿
𝜌 𝑓𝑜𝑟 𝜌 ≤ 𝛿

 (20-1)

Charge-flipping 223

223 Charge-flipping

Using the tangent formula on either difficult structures or on data at poor resolution often leads
to uranium atom solutions. Uranium atom solutions can be avoided by modifying the electron den-
sity using a flipping regime that dampens high electron densities or by using pick_atoms.

Using a largenumber of triplets per Eh value (a value for tangent_max_triplets_per_h greater than
100) reduces perturbation, increases occurrences of uranium atom solutions and increases the
chances of finding a solution after an initial phase randomization. A large number of triplets would
typically be used for poor resolution data; correspondingly a flipping regime that avoids uranium
atom solutions should be chosen. Perturbations mostly increase randomness in the system with
the exceptions of the tangent formula, scale_density_below_threshold and histo-
gram_match_scale_fwhm.

20.1.2 The Ewald sphere, weak reflections and CF termination

By default, CF uses the minimum observed d spacing to define the Ewald sphere; alternatively,
min_d can be used. The Ewald sphere can be increased using extend_calculated_sphere_to; this
inserts missing reflections and gives them the status of “weak”. Weak reflections are also inserted
for missing reflections within the Ewald sphere. Weak reflection phases and structure factors can
be modified using scale_weak_reflections and add_to_phases_of_weak_reflections.

Reflections that have zero intensities according to the space group are not included in CF; corre-
spondingly the number of observed reflections removed are reported. Structure factor intensi-
ties within a family of reflections are determined by averaging the observed structure factors in-
tensities. This averaging is also performed on calculated intensities each CF iteration for weak
reflections.

Changing the space group is possible; changing the space group to a higher symmetry from that
as implied in the input hkl file often makes sense. Changing the space group to a lower symmetry
implies less symmetry and is useful for checking whether a significantly better R-factor is real-
ized.

Typically, a fraction of observed reflections is given the status of “weak” using fraction_reflec-
tions_weak. When a solution is found and CF terminates, a *.FC file is saved; this file comprises
structures factors that produced the best R-factor. A new CF process can be initiated with phase
information saved in the *.FC file using the Restart_CF macro. To further complete the structure
the new CF process may for example reduce perturbations in order to sharpen the electron den-
sity.

20.1.3 Powder data considerations

For powder data it is usually best to maximize the number of constraints due to poor data quality;
it is also best to use *.A files as generated by a Pawley refinement and to then use cf_in_A_matrix.
No weak observed reflections within the observed Ewald sphere should be assigned by setting
fraction_reflections_weak to zero. Instead weak reflections can be included by extending the
Ewald sphere with something like:

Charge-flipping 224

224 Charge-flipping

extend_calculated_sphere_to 1
add_to_phases_of_weak_reflections = 90 Ramp(1, 0, 100);

If the Ewald sphere is extended such that the weak reflections are many then some of these weak
reflections could well be of high intensity. Subsequently offsetting high intensity weak reflections
by a constant could lead to too much perturbation and thus the following may be preferential:

extend_calculated_sphere_to 1
add_to_phases_of_weak_reflections = Rand(-180,180) Ramp(1, 0, 100);

In a Pawley refinement the calculated intensities at the low d-spcaing edge of are often in error
to a large extent; it is therefore best to remove these reflections using delete_observed_reflec-
tions, for example example:

delete_observed_reflections = D_spacing < 1.134;

A typical first try INP file template for powders is as follows:

macro Nr { 100 }
charge_flipping

cf_in_A_matrix PAWLEY_FILE.A
space_group $
a # b # c al # be # ga #
delete_observed_reflections = D_spacing < #;
extend_calculated_sphere_to #
add_to_phases_of_weak_reflections = 90 Ramp(1, 0, Nr);
flip_regime_2 = Ramp(1, 0, Nr);
symmetry_obey_0_to_1 = Ramp(0.5, 1, Nr);
Tangent(0.3, 30)
min_grid_spacing 0.3
load f_atom_type f_atom_quantity { ... }

20.1.3.1 Powder data, the A matrix and the Tangent formula

In the case of charge-flipping from powder data TOPAS uses the diagonally normalized A-matrix
cf_in_A_matrix (see example CF\CF-CIME.INP), which we will call D, from a Pawley refinement (see
example CF\CF-CIME-PAWLEY.INP) to modify normalized structure factors Eh calculated during
the charge-flipping process; this produces better results than using reflections output in a
SHELX format (Whitfield & Coelho, 2016). Equation (20-2) shows how the structure factors are
modified.

𝐄ℎ,𝑐𝑎𝑙𝑐,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝐄ℎ,𝑐𝑎𝑙𝑐√
𝐼𝑜𝑏𝑠,ℎ,𝑤

𝐼𝑐𝑎𝑙𝑐,ℎ,𝑤

where 𝐼𝑐𝑎𝑙𝑐,ℎ,𝑤 = ∑ Dℎ,𝑘
2

𝑘 𝐼𝑐𝑎𝑙𝑐,𝑘 and 𝐼𝑜𝑏𝑠,ℎ,𝑤 = ∑ Dℎ,𝑘
2

𝑘 𝐼𝑜𝑏𝑠,𝑘

(20-2)

The subscripts h and k correspond to reflections h and k respectively and the summation in k is
over all reflections. Icalc,k and Iobs,k corresponds to observed and calculated intensities. Equation (1)
modifies the calculated intensities to include intensities from overlapping peaks. When there’s
no overlap Di,i=1 and Di,j=0 and the calculated intensities as well as Eh are not modified. When using

Charge-flipping 225

225 Charge-flipping

the direct-methods tangent formula within the charge-flipping process as described by Coelho
(2007), the D matrix is also used to modify Eh values used in triple phase relationships as shown
in equation (2).

𝐸𝑜𝑏𝑠,ℎ,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝐸𝑜𝑏𝑠,ℎ𝑞ℎ + 𝐸𝑐𝑎𝑙𝑐,ℎ(1 − 𝑞ℎ)

where 𝑞ℎ = ∑ Dℎ,𝑘
2

𝑘

(20-3)

Eobs,h and Ecalc,h corresponds to tangent formula Eh values calculated from the observed and cal-
culated intensities respectively. Ecalc,h is typically not used in the tangent formula, however, in-
tensities used for determining Eobs,h can be grossly in error due to peak overlap. Equation (2)
therefore influences triple phase relationships by weighing Eobs,h by qh; when there’s no overlap
qh=1 resulting in no modification. When there’s significant overlap then qh is small and the influ-
ence of triple phase relationships using the h reflection is reduced. Equation (2) also includes a
(1-qh) portion of Ecalc,h thus stating that when there’s significant overlap the calculated Eh is to be
more trustworthy than the observed Eh. Equation (20-3) corrects for errors in Eh when Iobs is simi-
lar-to Icalc; this assists in reducing the goodness of fit value thus enhancing the chances of solving
the structure.

20.1.3.2 The algorithm of Oszlányi & Süto (2005) and F000

Normalized structure factors enhance the chances of finding a solution (Oszlányi & Süto, 2006)
and are realized by inclusion of f_atom_type’s and when correct_for_temperature_effects is non-
zero. Example CF-1A7Y-GABOR.INP implements the algorithm of Oszlányi & Süto (2005) with nor-
malized structure factors. In the original algorithm the amount of charge flipped is a function of
the maximum electron density; this can be realized using:

user_threshold = 0.2 Get(max_density_at_cycle_iter_0);

Get(max_density_at_cycle_iter_0) is a different value at the start of each CF process as phases
are chosen randomly. An alternative means of defining the threshold is:

fraction_density_to_flip 0.83

The CF process is sensitive to the threshold value. A value of 0.83 for fraction_density_to_flip is
optimum for 1A7Y and produces a solution in ~1000 iterations. A solution is not found however at
0.75 or 0.85. To overcome this sensitivity the fraction_density_to_flip parameter could be ramped
as a function of iteration from a high value to a low value, or,

fraction_density_to_flip = Ramp(0.85, 0.8, 100);

Implementation of such a ramp solves 1a7y in ~2000 iterations.

F000 is allowed floats when scale_F000 is set to 1. In the Oszlányi & Süto (2005) algorithm a float-
ing F000 produces the best results for some structures but not for others (see section 20.2.3).
When the electron density is perturbed then a floating F000 often produces unfavourable oscil-
lations in R-factors. In general, the electron density is best left unperturbed when scale_F000 is
non-zero. Example CF-1A7Y-GABOR.INP does not seem to solve at a lower resolution, try for ex-
ample:

Charge-flipping 226

226 Charge-flipping

delete_observed_reflections = D_spacing < 1.1;

On the other hand, when scale_F000 is zero then electron density perturbations are possible;
CF_1A7Y.INP solves 1A7Y at 1.1 Angstrom (i.e. include “delete_observed_reflections = D_spacing <
1.1”); CF_1A7Y.INP uses flip_regime_2 and the tangent formula.

20.2 ... Charge-flipping Investigations / Tutorials

The effects of CF keywords can be investigated by inclusion/exclusion of keywords or by changing
equations. This section lists some investigative examples and highlights the use of keywords nec-
essary to solve examples found in the CF directory.

20.2.1 Preventing uranium atom solutions using pick_atoms

Example CF-1A7Y-OMIT.INP uses pick_atoms to modify the peaks of the highest intensity atoms,
or,

pick_atoms * choose_to 5 omit = Rand(1, 1.1);

This example additionally uses the tangent formula and 1A7Y solves in ~100 iterations and with a
large contrast in R-factors before and at converegnce. Another means to modify the peaks are:

pick_atoms * choose_to 5 insert = Rand(-.1, 1);

The insert case is slightly slower than the omit case as the 5 atoms are first omitted before inser-
tion. Each case however solves 1A7Y in a similar number of iterations.

Example CF-1A7Y-NO-TANGENT.INP is similar but without the tangent formula, 1A7Y in this case
solves in ~1000 iterations.

20.2.2 The tangent formula on powder data

In CF-ALVO4.INP comment out the Tangent line as follows:

‘ Tangent(.5, 50)

Run CF-ALVO4.INP and turn on Octahedra viewing in the OpenGL window. Visual inspection of
picked atoms should show electron densities that are not recognizable as correct solutions.

Include the Tangent line and rerun; after a minute or two and at the bottom of the Ramps visual
inspection of picked atoms should show a welldefined solution.

Thus, use of the tangent formula assists in solving CF-ALVO4.INP.

20.2.3 Pseudo symmetry – 441 atom oxide

CF works well on pseudo symmetric structures (Oszlányi et al., 2006). Example CF-PN-02.INP is an
oxide structure that contains 441 atoms in the asymmetric unit (Lister et al., 2004); run CF to con-
vergence. Pick atoms and turn on Octahedra viewing; all polyhedra should be well formed. Thus,

Charge-flipping 227

227 Charge-flipping

CF works extremely fast and trivializes the solving of such structures. The contents of the INP file
is as follows:

charge_flipping
cf_hkl_file 020pn.hkl
space_group Pn
a 24.1332 b 19.5793 c 25.1091 be 99.962
fraction_reflections_weak 0.4
symmetry_obey_0_to_1 0.3
Tangent(0.25, 30)
load f_atom_type f_atom_quantity {

MO = 42 2;
P = (126 - 42) 2;
O = (441 - 126) 2;

}

The tangent formula is used to assist symmetry_obey_0_to_1 and to assist in finding the solution
faster; it is not necessary however for this example. The Oszlányi & Süto (2005) algorithm can be
used by replaceing symmetry_obey_0_to_1 and the Tangent line with the following:

scale_F000 1
fraction_reflections_weak 0.4
add_to_phases_of_weak_reflections 90
user_threshold = 0.15 Get(max_density_at_cycle_iter_0);

Slow convergence is observed due to the use of F000. This is opposite to the case of 1a7y in CF-
1A7Y-GABOR.INP where F000 is necessary. Setting scale_F000 to zero greatly increases the rate
of convergence.

20.2.4 Origin finding and symmetry_obey_0_to_1

When symmetry_obey_0_to_1 is defined origin finding is performed each iteration of charge flip-
ping. Symmetry elements of the space group are used in finding an origin. On finding an origin the
electron density is shifted to a position that best matches the symmetry of the space group. Ad-
ditionally, a restraint is placed on the electron density pixels forcing symmetry to be obeyed.

Run CF-AE14.INP to convergence; notice the P-1 symmetry. Remove symmetry_obey_0_to_1 and
run to convergence; the origin should now be arbitrary.

20.2.5 symmetry_obey_0_to_1 on poor resolution data

Run CF-AE5.INP until a solution is found; terminate CF, this saves the phase information to the file
AE5.FC. Copy AE5.FC to AE5-SAVE.FC. Place the following lines into the file CF-AE5-POOR.INP:

set_initial_phases_to ae5-save.fc
randomize_initial_phases_by 0

This simply starts CF with optimum phase values. Also include the following line:

symmetry_obey_0_to_1 0.75

Charge-flipping 228

228 Charge-flipping

Run CF-AE5-POOR.INP; the atom positions after picking should visually produce the correct result.
Comment out symmetry_obey_0_to_1 and rerun CF-AE5-POOR.INP. R-factors should diverge and
picked atoms should show a non-solution. Thus, symmetry_obey_0_to_1 assists in solving CF-AE5-
POOR.INP.

Include symmetry_obey_0_to_1 and remove set_initial_phases_to and randomize_ini-
tial_phases_by and then rerun CF-AE5-POOR.INP. A solution should be obtained in a few minutes.
Note that in this example the default flipping regime leads to regular occurrences of uranium
atom solutions; this can be trivially ascertained by viewing the electron density. To reduce the
occurrences of uranium atom solutions the following flipping regime is used:

flip_regime_3 0.5

20.2.6 Sharpening clouds - extend_calculated_sphere_to

Example CF-AE9-POOR.INP demonstrates the limit to which the present CF implementation can
operate. Single crystal data is purposely chosen to isolate resolution effects and not intensity er-
rors. The tangent formula is critical where without it the CF process is extremely perturbed and
unstable. ‘flip_regime_3 0.5’ is used due to occurrences of uranium atom solutions.

There are no ramps, instead the CF process is restarted when the R-factor fails to decrease for
100 consecutive iterations, or,

break_cycle_if_true = Get(iters_since_last_best) > 100;
randomize_phases_on_new_cycle_by = Rand(-180, 180);

Half of the observed reflections are considered weak and additionally missing reflections up to 1
Angstrom are included and considered weak using:

fraction_reflections_weak 0.5
extend_calculated_sphere_to 1

The intensities of weak reflections are left untouched and instead a Pi/2 phase shift is randomly
applied to ~30% of weak reflections as follows:

add_to_phases_of_weak_reflections = If(Rand(0, 1) < .3, 90, 0);

A symmetry_obey_0_to_1 of 0.7 is used not merely to find an origin but rather to prevent the elec-
tron density from straying.

Run CF-AE9-POOR.INP and a solution should be clearly recognizable after a few minutes.
Change/remove keywords and rerun to view effects. Examples CF-CIME-POOR.INP and CF-AE5-
POOR.INP are similar.

20.2.7 A difficult powder, CF-SUCROSE.INP

CF-SUCROSE.INP without scale_density_below_threshold=0 exhibits large oscillations in R-fac-
tors resulting in difficult to identify solutions; this can be prevented by increasing the amount of
charge flipped and including scale_density_below_threshold=0, for example

Charge-flipping 229

229 Charge-flipping

fraction_density_to_flip 0.83
scale_density_below_threshold 0

When scale_density_below_threshold=0 is used the percentage of charge that is less than the
threshold before the application of scale_density_below_threshold is reported; the difference be-
tween this reported value and (1-fraction_density_to_flip) gives the flipped pixels that survived
scale_density_below_threshold. At fraction_density_to_flip of 0.83 approximately 23% of pixels
survives scale_density_below_threshold=0 which in effect means that only 23% of pixels are ac-
tually flipped out of the original 83%.

The following can be used to omit 30% of atoms:

pick_atoms *
activate = Cycle_Iter == 0;
insert = If(Rand(0, 1) > 0.3, 10, 0);

Note that atoms are inserted at an intensity that is 10 times the average intensity. This increases
the weight of inserted atoms relative to electron density noise. It also initially gives more weight
to weak reflections.

Use of scale_density_below_threshold often results in CF requiring more interations to solution;
a solution however is preferable to no solution.

20.2.8 Increasing contrast in R-factors

The act of flipping introduces an appreciable amount of unwanted high frequencies in the struc-
ture factors. This effect can be reduced by dampening high frequencies using apply_exp_scale
which is ON by default. apply_exp_scale changes R-factors and not phases, directions taken by CF
are unchanged.

Run CF-1A7Y.INP until convergence. The difference in R-factors before and at convergence should
be ~0.39 (i.e. 0.81 and 0.42). Turn OFF apply_exp_scale by including the following line:

apply_exp_scale 0

Rerun CF-1A7Y.INP until convergence. The difference in R-factors before and at convergence
should now be ~0.29 (i.e. 0.81 and 0.52). Thus apply_exp_scale increases contrast in R-factors.
Note that most of the increase seems to be realized from d-spacings less than 1 Angstrom.

20.3 ... Charge Flipping and neutron_data

neutron_data informs the charge flipping routine that neutron scattering lengths are to be used.
It also results in the following default neutron flipping routine being used:

flip_equation =
If(And(Get(density)< Get(threshold),Get(density) > 0.4 Get(min_density)),

-Get(density),
 Get(density)

);

Charge-flipping 230

230 Charge-flipping

flip_neutron can be used to change the 0.4 value occurigng in the above equation, for example:

flip_neutron = 0.5;

The tangent formula is made less accurate due to the negative scattering of H atoms. However,
if positive scattering lengths are dominant then the tangent formula can stabilize refinement. For
example (see TEST_EXAMPLES\CF\NEUTRON-CIME\CF-NEUTRON.INP), try:

Tangent(0.3, 30) tangent_scale_difference_by = Ramp(1, 0, Nc);

20.4 ... Charge-flipping Examples

Table 20-3. Examples found in the CF directory. Number of atoms corresponds to the number
of non-hydrogen atoms within the asymmetric unit.

Single crystal data Num atoms in asymmetric unit Space group

CF-1A7Y.INP
CF-1A7Y-GABOR.INP
CF-1A7Y-OMIT.INP
CF-1A7Y-NO-TANGENT.INP

314

P1

CF-AE14.INP 43 P-1

CF-AE5.INP
CF-AE5-POOR.INP

23 C2/c

CF-AE9.INP
CF-AE9-POOR.INP

53 P-1

CF-GEBAA.INP 17 P41212

CF-PN-02.INP 441 Pn

CF-YLIDM.INP 17 P212121

Powder data

CF-ALVO4.INP
CF-ALVO4-PAWLEY.INP

18 P-1

CF-CIME-PAWLEY.INP
CF-CIME.INP
CF-CIME-HISTO.INP
CF-CIME-POOR.INP
CF-CIME-POOR-HISTO.INP

17

P21/a

CF-SUCROSE.INP
CF-SUCROSE-PAWLEY.INP

23 P21

Charge-flipping 231

231 Charge-flipping

20.5 ... Keywords in detail

[add_to_cloud_N !E]
[add_to_cloud_when !E]

The current cloud is added to the GUI cloud creating a running average cloud for display pur-
poses. add_to_cloud_N corresponds to the number of most recent clouds to include in the
running average. add_to_cloud_when determines when the current cloud is to be included in
the running average; here’s an example:

add_to_cloud_N 10 add_to_cloud_when = Mod(Cycle_Iter, 2);

Averaged clouds eliminate noise and is effective if the cloud remains stationery which is gen-
erally the case. Note that add_to_phases_of_weak_reflections can produce translations of the
cloud and should not be included when averaging clouds.

[add_to_phases_of_weak_reflections !E]

Allows for modification to phases of weak reflections. For example, to add /2 to the phases
of weak reflections then the following could be used:

add_to_phases_of_weak_reflections 90

When add_to_phases_of_weak_reflections is defined then the intensities of weak reflections
are not set to zero; instead they are left untouched meaning that their intensities are set to
the values as determined by the inverse Fourier transform. See also scale_weak_reflections.

[apply_exp_scale !E]

Determines a and b each CF iteration such that the following is a minimum:

R-factor = ∑| a Exp(b / D_spacing^2) Fc – Fo |

where Fc and Fo are the calculated and observed moduli respectively. Use of apply_exp_scale
corrects R-factors in case of an incorrect temperature factor correction as applied when nor-
malizing structure factors. Use of apply_exp_scale typically increases the difference between
R-factors prior to and at convergence. apply_exp_scale is used by default, setting it to zero
prevents its use.

[cf_hkl_file $file]

Defines the input hkl file.

[cf_in_A_matrix $file [scale_Aij !E]]

Data input is from a file created using out_A_matrix from a previous Pawley refinement. The
correlations in $file are used to partition intensities during each iteration of charge-flipping.
This partitioning is applied to structure factors as used by CF and as used by the tangent for-
mula. scale_Aij can be used to modify the A matrix off-diagonal coefficients, here are some
examples:

Charge-flipping 232

232 Charge-flipping

scale_Aij = Get(Aij);
scale_Aij = Get(Aij)^2; ‘ The default
scale_Aij = 0; ‘ Equivalent to using a Pawley generated hkl file

CF on powder data can also be initiated using standard hkl files.

[break_cycle_if_true !E]

Interrupts charge flipping to execute randomize_phases_on_new_cycle_by. Cycle_Iter is set
to zero and Cycle is incremented.

[correct_for_atomic_scattering_factors !E]

Structure factors are normalized when correct_for_atomic_scattering_factors is non-zero
and when f_atom_type’s are defined. By default structure factors are normalized.

[correct_for_temperature_effects !E]

Attempts to remove isotropic temperature effects from the structure factors. cor-
rect_for_temperature_effects is ON by default, setting it to zero will prevent the correction.
Normalized structure factors are realized when correct_for_temperature_effects is ON and
the unit cell contents is defined using f_atom_type and f_atom_quantity.

[delete_observed_reflections !E]

Reflections are deleted before entering CF according to delete_observed_reflections; it can
be a function of D_spacing, for example:

delete_observed_reflections = D_spacing < 1.1;

Once deleted, observed reflections cannot be reinstated by changing min_d.

[extend_calculated_sphere_to !E]

Used to sharpen electron density clouds by filling in missing reflections; added reflections are
given the status of “weak”. extend_calculated_sphere_to can be used in conjunction with
scale_weak_reflections and add_to_phases_of_weak_reflections to modify “weak” reflection
magnitudes and phases respectively (see section 20.2.6); here’s an example:

extend_calculated_sphere_to 1
add_to_phases_of_weak_reflections = If(Rand(0, 1) < .3, 90, 0);

[f_atom_type $type f_atom_quantity !E]...

Defines atom types and number of atoms within the unit cell; used by the tangent formula in
determining Eh values and by the OpenGL display for picking atoms. For the tangent formula
then realtive quantities are important.

Charge-flipping 233

233 Charge-flipping

[find_origin !E]

If defined and non-zero then origin finding is turned ON. symmetry_obey_0_to_1 defines
find_origin by default. symmetry_obey_0_to_1 can be used without find_origin by defining and
setting find_origin to zero.

[flip_equation !E]

Allwows for a user defined flip; here’s an example:

flip_equation = If(Get(density)<Get(threshold),-Get(density), Get(density));

[flip_regime_2 !E]

The elctron density is modified according to Eq. (20-1) and then further modified using:

𝜌 = 𝜌 − 𝐺𝑒𝑡(flip_regime_2)𝜌3/𝜌𝑚𝑎𝑥
2

flip_regime_2 is typically ramped from 1 to 0.

[flip_regime_3 !E]

The elctron density is modified according to Eq. (20-1) and then further modified using:

𝜌 = {
𝜌, for 𝜌 < 𝛿

𝑀𝑖𝑛(𝜌, 𝜌𝑚𝑎𝑥Get(flip_regime_3)), for 𝜌 ≥ 𝛿

A value of 0.5 for flip_regime_3 introduces little perturbation whilst reducing the occurance
of uranium atom solutions. It is recommended that flip_regime_3 be used in cases where
flip_regime_2 produces uranium atom solutions. An additional perturbation, such as
“add_to_phases_of_weak_reflections=90;” may be necessary.

[fraction_density_to_flip !E]

The amount of charge flipped is fractionally based. A value of 0.6, for example, sets the
threshold such that the sign of the lowest 60% of charge is changed. Get(threshold) can be
used to retrieve .

[fraction_reflections_weak !E]

Defines the fraction of observed reflections to flag as “weak”. When scale_weak_reflections,
add_to_phases_of_weak_reflections and extend_calculated_sphere_to are all not defined
then intensities of weak reflections are set to zero effectively removing them from the charge
flipping process. Otherwise intensities of weak reflections are not set to zero; instead they
are left untouched prior to scale_weak_reflections and add_to_phases_of_weak_reflections
and space group family averaging.

[histogram_match_scale_fwhm !E]
[hm_size_limit_in_fwhm !E]
[hm_covalent_fwhm !E]

Charge-flipping 234

234 Charge-flipping

An implementation of Histogram Matching (bBaerlocher et al., 2007) where the distribution of
pixels within the unit cell is restrained to one that matches Gaussian atoms with intensities
corresponding to the atoms defined by f_atom_type‘s. The Histogram matching operation is
performed when histogram_match_scale_fwhm evaluates to a non-zero value. Subsequently
the full width at half maximum (FWHM) of the Gaussians (obtained from the file ATOM_RA-
DIUS.DEF) is scaled by histogram_match_scale_fwhm. hm_size_limit_in_fwhm corresponds to
the extent to which the Gaussians are calculated in units of FWHM. Covalent radii is used if
hm_covalent_fwhm evaluates to a non-zero value otherwise ionic radii is used. An example
use is as follows:

histogram_match_scale_fwhm = If(Mod(Cycle_Iter, 3), 0, 1);
hm_size_limit_in_fwhm 1
hm_covalent_fwhm 1

Reported on is the fraction of pixels modified; values of 1 for both histo-
gram_match_scale_fwhm and hm_size_limit_in_fwhm seem optimal where typically ~15 to
20% of pixels are modified. Use of histogram matching should produce R-factors at conver-
gence that are equal to or than less R-factors produced when not using histogram matching.
Histogram matching sharpens the electron density cloud for data at poor resolution (see ex-
amples CF-CIME-HISTO.INP and CF-CIME-POOR-HISTO.INP).

[min_d !E]

Determines in Å the resolution of observed reflections to work with; only observed reflections
with a d-spacing above min_d are considered. min_d is evaluated each CF iteration.
Get(num_observed_reflections_above_d_min) is updated when a change in min_d is detected.
See also extend_calculated_sphere_to and delete_observed_reflections.

[min_grid_spacing !E]

If defined, then the grid spacing used is set to the smaller of min_d/2 and min_grid_spacing;
useful for obtaining many grid points for graphical purposes.

[neutron_data]

Signals that the input data is of neutron type. Used in the picking of atoms and additionally Eh
values are not corrected from any defined f_atom_type and f_atom_quantity keywords.

[pick_atoms $atoms]...
[activate !E]
[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[omit !E]
[displace !E]
[insert !E]

pick_atoms modifies the electron density based on picked atoms. $atom corresponds to the
atom types to be operated on; it can contain the wild card character ‘*’ and the negation

Charge-flipping 235

235 Charge-flipping

character ‘!’, see section 17.20 for details. The operations of pick_atoms are invoked when ac-
tivate evaluates to a non-zero value, for example,

pick_atoms “O C”
activate = Mod(Cycle_Iter, 20) == 0;

The picking routine attempts to locate the atom types found in $atom based on the intensities
of picked atoms and the scattering power of the atoms defined in f_atom_type. For example,

load f_atom_type f_atom_quantity { Ca 2 O 10 C 12 }
pick_atoms “O C”

Here two Ca atoms are first picked and then 10 O atoms and then 12 C atoms. The picked atoms
operated on will be the O and C atoms with the Ca atoms ignored.

choose_from and choose_to can be used to limit the number of atoms operated on. Note, that
picked atoms within pick_atoms are sorted in decreasing intensity order. For example, to not
operate on the first thee O atoms and the last 2 C atoms then the following could be used:

choose_from 4
choose_to 20

choose_randomly further reduces the atoms operated on and is executed after choose_from
and choose_to.

omit removes operated-on-atoms from the electron density. Atoms can be partially removed
by setting omit to values less than 1. Values greater than 1 can also be used, the effect is to
change the sign of the electron density. omit operating on a few of the highest intensity atoms
is an extremely effective means of preventing the occurance of uranium atom solutions, see
CF-1A7Y-OMIT.INP; for example:

pick_atoms *
choose_to 5
omit = Rand(1, 1.1);

Omitting atoms randomly is a technique referred to as “random omit maps” in ShelXD,
(Schneider and Sheldrick, 2002).

insert inserts operated on atoms; a value of 1 inserts the atoms with an intensity that is equal
to the average of the picked atoms. Values of less than 1 decreases the intensity of the in-
serted atoms. When insert is defined then omit is internally defined if it does not already exist.
Thus, atoms are removed before insertion by default.

displace displaces in Å atom positions from their picked positions; it is evaluated before in-
sert. For example, to randomly displace atoms by 0.3 Å then the following could be used:

displace = Rand(0.4, 0.6);
insert 1

Charge-flipping 236

236 Charge-flipping

There can be more than one occurance of pick_atoms, for example to limit uranium atom so-
lutions then the following can be used:

pick_atoms *
choose_to 5
insert = Rand(-.1, 1);

To further randomly remove ~33% of atoms then the following could additionally be used:

break_cycle_if_true = Get(iters_since_last_best) > 10;
pick_atoms *

activate = Cycle_Iter == 0;
insert = If(Rand(0, 1) > 0.33, 10, 0);

Note that in this example atoms are inserted at ten times the average picked intensity; this
simply gives more weight to picked atoms relative to electron density noise. Additionaly weak
reflections are also given more weighting.

[pick_atoms_when !E]

Atoms are picked in the OpenGL display when pick_atoms_when evaluates to a non-zero value;
here’s an example:

pick_atoms_when = Mod(Cycle_Iter + 1, 10) == 0;

Note that picking can be manually initiated from the Cloud dialog of the OpenGL display. A text
description of picked atoms can be obtained by opening the “Temporary output” text window
of the OpenGL window.

[randomize_initial_phases_by !E]

Initializes phases. To start a process with already saved phase information then the following
could be used:

set_initial_phases_to aleady_saved.fc
randomize_initial_phases_by 0 ‘ this has a default of 0

[randomize_phases_on_new_cycle_by !E]

randomize_phases_on_new_cycle_by = Rand(-180, 180); ‘ an example

[scale_density_below_threshold !E]

Electron density pixels that are less than the threshold value are scaled by scale_density_be-
low_threshold. Values for scale_density_below_threshold thata re less than 1 tends to sharpen
the electron density and to reduce large oscillations in R-factors; the latter occurs for bad
data, see example CF-SUCROSE.INP. A value of zero for scale_density_below_threshold results
in “low density elimination” simlar to that of Shiono & Woolfson (1992).

Charge-flipping 237

237 Charge-flipping

[scale_E !E]

Normalized structure factors (Eh values) are a function of correct_for_temperature_effects
and unit cell contents. scale_E allows for an additional scaling of Eh values.

[scale_F !E]

CF works with normalized structure factors by default. scale_F is an additional scaling of
structure factors. The defualt scale_F broadens electron density peaks to avoid pixilation ef-
fects and is given by:

scale_F = Exp(-0.2 Get(d_squared_inverse));

[scale_F000 !E]

Scale should be set to 1 for compliance with the algorithm of Oszlányi & Süto (2004). When
scale_F000 is non_zero then modifcations to the electron density produces unfavourable ef-
fects.

[scale_weak_reflections !E]

By default, weak reflection structure factors are set to zero; however, when either
scale_weak_reflections or add_to_phases_of_weak_reflections is defined then weak reflec-
tions structure factors are instead modified accordingly, for example:

scale_weak_reflections = Rand(-0.2, 0.4);

scale_weak_reflections or add_to_phases_of_weak_reflections can be a function of D_spac-
ing.

[set_initial_phases_to $file]
[modify_initial_phases !E]

Sets initial phases to those appearing in $file. Typically, $file corresponds to a *.FC file saved
in a previous charge-flipping process. modify_initial_phases is executed each iteration of CF;
it can be used to restrain the phases of $file. For example,

modify_initial_phases = Get(initial_phase) + Min(Abs(Get(phase_difference)),45);

where phase_difference corresponds to the difference between the current phase and the
initial phase; it has a value between ±90º. modify_initial_phases can be used to constrain
phases to those as determined by high resolution transmission electron microscopy HRTEM
(aBaerlocher et al., 2007).

[space_group $]

If defined, then the cf_hkl_file is assumed to comprise merged hkls corresponding to the de-
fined space group; otherwise the cf_hkl_file is assumed to be of space group type P1.

Charge-flipping 238

238 Charge-flipping

[symmetry_obey_0_to_1 !E]

If a space group is defined then symmetry is adhered to according to symmetry_obey_0_to_1.
symmetry_obey_0_to_1 can be throught of as a real space electron density restraint; its value
should range between 0 and 1. If 1 then symmetry is obeyed 100%; if 0 then for a particular set
of equivalent grid points, as determined by the equivalent positions of the space group, an
average density avg is obtained. The electron densities on the grid points are then adjusted as
follows:

new = (1 − symmetry_obey_0_to_1) + symmetry_obey_0_to_1 avg

The text output 'symmetry error' as displayed when symmetry_obey_0_to_1 is used is defined
as follows:

′𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑒𝑟𝑟𝑜𝑟′ =
∑|𝜌 − 𝜌𝑎𝑣𝑔|

∑|𝜌|

where the summation is over all electron density grid points. symmetry_obey_0_to_1 defines
find_origin by default. find_origin is applied before symmetry_obey_0_to_1. find_origin shifts
the electron density such that an approximate error in 'symmetry error' is minimized; thus
find_origin assists in the symmetry_obey_0_to_1 restraint.

[tangent_num_h_read !E]
[tangent_num_k_read !E]
[tangent_num_h_keep !E]
[tangent_max_triplets_per_h !E]
[tangent_min_triplets_per_h !E]
[tangent_scale_difference_by !E]

tangent_num_h_read and tangent_num_k_read defines the number of highest h and highest k
reflections to read in determining triplets. tangent_num_h_keep defines the number of high-
est h reflections to include for tangent formula updating. tangent_max_triplets_per_h and
tangent_min_triplets_per_h defines the maximum and minium number of triplets per reflec-
tion h. Reflections with less than tangent_min_triplets_per_h are not included for tangent for-
mula updating. tangent_scale_difference_by corresponds to S in the following:

∅ℎ,𝑛𝑒𝑤 = ∅ℎ,𝑐𝑓 + 𝑆 𝛼ℎ(∅ℎ,𝑡𝑓 − ∅ℎ,𝑐𝑓)

𝑡𝑎𝑛(∅ℎ,𝑡𝑓) = 𝑇ℎ 𝐵ℎ⁄

𝑇ℎ = ∑ 𝐸ℎ𝐸𝑘𝐸ℎ−𝑘𝑠𝑖𝑛(∅𝑘 − ∅ℎ−𝑘)𝑘

𝐵ℎ = ∑ 𝐸ℎ𝐸𝑘𝐸ℎ−𝑘𝑐𝑜𝑠(∅𝑘 + ∅ℎ−𝑘)

𝑘

𝛼ℎ = 𝑀ℎ 𝑀ℎ,𝑚𝑎𝑥⁄ , 𝑀ℎ = √𝑇ℎ
2 + 𝐵ℎ

2

Charge-flipping 239

239 Charge-flipping

[user_threshold !E]

By default, Get(threshold) is determined using fraction_density_to_flip. When defined then
user_threshold overrides fraction_density_to_flip. Electron density pixels are normalized to
have a maximum value of 1, thus typical values for user_threshold range between 0 and 0.1.

[use_Fc]

Sets initial phases to those saved in a previous *.FC file. The FC file used corresponds to the
same name as the data file, defined using cf_hkl_file or cf_in_A_matrix, but with a FC exten-
sion. use_Fc is similar-to set_initial_phases_to except that the file is implied.

[verbose #]

A value of 1 outputs text in a verbose manner. A value of 0 outputs text only when a R-factor
less that a previous value is encountered within a particular Cycle.

[view_cloud !E]

Informs a detected GUI to display the electron density. Here are some examples:

view_cloud 1 ‘ Update cloud every charge-flipping iteration
view_cloud = Mod(Cycle_Iter, 10) == 0;

Indexing 240

240 Indexing

21. INDEXING

The following algorithm is based on the iterative method of Coelho (2003). Unlike lp_serach it re-
quires the extraction of d-spacings. The INDEXING directory contains example INP files, example
usage is as follows:

index_zero_error
try_space_groups "2 75"
load index_d {
 8.912
 7.126
 4.296
 ...
}

Individual space groups can be tried or for simplicity all Bravais lattices can be tried using stand-
ard macros as follows:

Bravais_Cubic_sgs
Bravais_Trigonal_Hexagonal_sgs
Bravais_Tetragonal_sgs
Bravais_Orthorhombic_sgs
Bravais_Monoclinic_sgs
Bravais_Triclinic_sgs

To try all unique extinction subgroup space-groups, a more exhaustive approach, then the follow-
ing macros can be used:

Unique_Cubic_sgs
Unique_Trigonal_Hexagonal_sgs
Unique_Tetragonal_sgs
Unique_Orthorhombic_sgs
Unique_Monoclinic_sgs
Unique_Triclinic_sgs

On termination of Indexing a *.NDX file is created, with a name corresponding to the name of the
INP file, and placed in the same directory as the INP file. The *.NDX file contains solutions found
as well as a detailed summary of the best 20 solutions. Here’s an example of an NDX file:

‘ Indexing method - Alan Coelho (2003), J. Appl. Cryst. 36, 86-95
‘ Time: 2.015 seconds
 ‘Sg Status UNI Vol Gof Zero Lps ...
Indexing_Solutions_With_Zero_Error_2 {
 0) P42/nmc 3 0 1187.321 38.82 0.0000 11.1924 ...
 1) P42/nmc 3 0 1187.057 38.64 0.0000 11.1896 ...
 2) P42/nmc 3 0 1187.458 38.61 0.0000 11.1914 ...

...
}
/*
==
 0) P-1 0 985.652 30.80 0.0111 7.0877 ...

 h k l dc do do-dc 2Thc 2Tho 2Tho-2Thc
 0 0 1 15.857 15.830 -0.027 5.569 5.578 0.009

Indexing 241

241 Indexing

 0 1 0 8.765 8.750 -0.015 10.084 10.101 0.017
...

*/

21.1 ... Figure of merit

The figure of merit M used in indexing is as follows:

𝑀 = [(1 + 𝑁𝑢𝑛𝑖)𝑑𝑜,𝑚𝑖𝑛
2 (

𝑁𝑐

𝑁𝑜
) ∑|𝑑𝑜,𝑖

2 − 𝑑𝑐,𝑖
2 |𝑄𝑖

𝑖

]

−1

where 𝑄𝑖 = 𝑤𝑖𝑁𝑜 ∑ 𝑤𝑗𝑗⁄

(21-1)

Where do and dc are the observed and calculated d-spacings, No and Nc the number of observed
and calculated lines used, Nuni the number of unindexed lines and the summations are over the
used observed indexing lines. Qi is a weighting that assists in the determination of extinction sub-
groups where wi could for example be the inverse of the error in the peak positions from a Pawley
refinement (see INDEXING\MGIR\INDEX.INP). index_I correspond to wi. The formulation of Qi is
such that with or without Qi the figure of merit M is of the same order of magnitude. The recipro-
cal-space lattice relationship solved during the indexing process (Coelho, 2000) includes Q as fol-
lows:

[𝑋ℎℎℎ2 + 𝑋𝑘𝑘𝑘2 + 𝑋𝑙𝑙𝑙
2 + 𝑋ℎ𝑘ℎ 𝑘 + 𝑋ℎ𝑙ℎ 𝑙 + 𝑋𝑘𝑙𝑘 𝑙 +

4 𝜋𝑍𝑒

360𝜆2
𝑠𝑖𝑛(2𝜃)] 𝑊ℎ𝑘𝑙 =

𝑊ℎ𝑘𝑙

𝑑𝑜
2

where 𝑊ℎ𝑘𝑙 = 𝑄ℎ𝑘𝑙𝑑𝑜
𝑚|𝛥2𝜃ℎ𝑘𝑙|

(21-2)

21.2 ... Extinction subgroup determination

At the end of an indexing run further indexing runs are internally performed across extinction
subgroups (see section 21.8) to determine the most likely subgroup. These internal runs are
seeded with already determined lattice parameters and in most cases the correct extinction sub-
group is obtained without the need for Qi in Eq. (21-1). Extinction subgroups can be explicitly
searched using the macros defined TOPAS.INC, see for example Unique_Orthorhombic_sgs.

21.3 ... Reprocessing solutions - DET files

Details of solutions can be obtained at a later stage by including solution lines, found in the NDX
file, in the INP file. For example, supposing details of solutions 50 and 51 were sought then the
following (see example INDEXING\EX10.INP) could be used:

Indexing 242

242 Indexing

index_lam 1.540596
index_zero_error
try_space_groups 2
Indexing_Solutions_With_Zero_Error_2 {
 50) P-1 1 0 2064.788 9.74 0.0000 ...
 51) P-1 3 0 3128.349 9.61 0.0115 ...
}
load index_d {
 15.83 good
 8.75
 7.91
 ...
}

After running this INP file, a *.DET file is created containing details of the supplied solutions.

21.4 ... Keywords and data structures

Tindexing
[index_lam !E1.540596]
[index_min_lp !E2] [index_max_lp !E]
[index_max_Nc_on_No !E5]
[index_max_number_of_solutions #3000]
[index_max_th2_error !E0.05]
[index_max_zero_error #0.2]
[index_th2 !E | index_d !E]...

[index_I E1 [good]]
[index_x0 !E]
[index_zero_error]
[no_extinction_subgroup_search]
[seed [#]]
[try_space_groups $]...

[x_angle_scaler #0.1]
[x_scaler #]

Values for most keywords are automatically determined or have defaults (appearing as numbers
to the right) adequate for difficult indexing problems. In the following example from UPPW (ser-
vice provided by Armel Le Bail to the SDPD mailing list at http://sdpd.univ-lemans.fr/uppw/), only
a few keywords are necessary. Also note the use of dummy; this allows for the exclusion of 2 and
I values without having to edit the columns of data.

http://sdpd.univ-lemans.fr/uppw/

Indexing 243

243 Indexing

seed
index_lam 0.79776
index_zero_error
index_max_Nc_on_No 6
try_space_groups 3
load index_th2 dummy dummy index_I dummy {

‘ d (A) 2Theta Height Area FWHM
1.724 26.50645 2758.3 23303.7 0.0450
2.646 17.27733 150393.8 747063.6 0.0250
3.235 14.13204 98668.8 493153.7 0.0250
3.417 13.37776 11102.6 53185.0 0.0250
5.190 8.80955 782.7 3910.9 0.0250
...

}

21.5 ... Keywords in detail

[index_lam !E1.540596]

Defines the wavelength in Å.

[index_min_lp !E2.5] [index_max_lp !E]

Defines the minimum and maximum allowed lattice parameters. The maximum is typically au-
tomatically determined.

[index_max_Nc_on_No !E5]

Determines the maximum ratio of the number of calculated to observed lines. The value of 6
allows for up to 83% of missing lines.

[index_max_number_of_solutions #1000]

The number of best solutions to keep.

[index_max_th2_error !E0.05]

Used for determining impurity lines (un-indexed lines UNI in *.NDX). Large values, 1 for exam-
ple, forces the consideration of more observed input lines. For example, if it is known that
there are none or maybe just one impurity line then a large value for index_max_th2_error will
speed up the indexing procedure.

[index_max_zero_error !E0.2]

Excludes solutions with zero errors greater than index_max_zero_error.

[index_th2 !E | index_d !E]...
[index_I E1 [good]]

index_th2 or index_d defines a reflection entry in 2 degrees or d-spacing in Å. index_I is typ-
ically set to the area under the peak; it is used to weight the reflection. good signals that the
corresponding d-spacing is not an impurity line. A single use of good on a large d-spacing

Indexing 244

244 Indexing

decreases the number of possible solutions and hence speeds up the indexing process (see
example INDEXING\EX10.INP).

[index_x0 !E]

Defines Xhh in the reciprocal lattice equation of (21-1). In a triclinic lattice the largest d-spacing
can probably be indexed as 100 or 200 etc. Thus

index_x0 = 1/(dmax)^2;

speeds up the indexing process (if, in this case, the first line can be indexed as 100) and addi-
tionally the chances of finding the correct solution is enhanced, see EX13.INP. Note, if the data
is in 2Th degrees then the following can be used:

index_x0 = (2 Sin(2Thmin Pi/360) / wavelength))^2;

The two macros Index_x0_from_d and Index_x0_from_th2 simplify the use of index_x0.

[index_zero_error]

Includes a zero error.

[no_extinction_subgroup_search]

By default Extinction subgroup determination is performed at the end of an indexing run; this
can be negated by defining no_extinction_subgroup_search.

[seed [#]]

Seeds the random number generator.

[try_space_groups $]...
[x_angle_scaler #0.1]
[x_scaler #]

Defines the space groups to be searched. The macros Bravais_Cubic_sgs etc... (see
TOPAS.INC) defines lowest symmetry Bravais space groups. It is typically sufficient to use only
these. Higher symmetry space groups for the Bravais lattices corresponding to the 10 best
solutions is automatically searched at the end of an indexing run. Here are some examples of
using try_space_groups.

Search Use

Primitive monoclinic try_space_groups 3

Monoclinic Bravais lattices of lowest symmetry Bravais_Monoclinic_sgs

C-centered monoclinic of lowest symmetry try_space_groups 5

All orthorhombic space groups individually Unique_Orthorhombic_sgs

Indexing 245

245 Indexing

x_scaler is a scaling factor used for determining the number of steps to search in parameter
space. x_scaler needs to be less than 1. Increasing x_scaler searches parameter space in finer
detail. Default values are as follows:

Cubic 0.99

Hexagonal/Trigonal 0.95

Tetragonal 0.95

Orthorhombic 0.89

Monoclinic 0.85

Triclinic 0.72

x_angle_scaler is a scaling factor for determining the number of angular steps for monoclinic
and triclinic space groups. Small values, 0.05 for example, increases the number of angular
steps. The default value of 0.1 is usually adequate.

21.6 ... Identifying dominant zones

Here are two example output lines from an NDX file.

0) P42/nmc 3 0 1187.124 38.82 0.000 11.1904 11.1904 9.4799 90.00 90.00 90.00 ‘ === 24 19
6) P-421c 3 0 1187.124 35.67 0.000 11.1904 11.1904 9.4799 90.00 90.00 90.00 ‘ === 24 19

- The 1st column corresponds to the rank of the solution.

- The 2nd corresponds to the space group.

- The 3rd corresponds to the Status of the solution as follows:

 Status 1: Weighting applied as defined in Coelho (2003).

 Status 2: Zero error attempt applied.

 Status 3: Zero error attempt successful and impurity lines removal successful.

 Status 4: Impurity line(s) removed.

- The 4th column corresponds to the number of un-indexed lines.

- The 5th column corresponds to the volume of the lattice.

- The 6th corresponds to the goodness of fit value.

- The 7th corresponds to the zero error if index_zero_error is included.

- Columns 8 to 13 contains the lattice parameters.

The last two columns, let call them column Q1 and Q2, contain the number of non-zero (h2 + k2 + h k)
and l2 values, respectively, used in the indexed lines. Q1 and Q2 represent the hkl coefficient for X0
and X1 respectively for Trigonal/Hexagonal systems. When Q1=-999 or Q2=-999 then the corre-
sponding lattice parameters are not represented. This facility is useful for identifying dominant
zones. For example, if the smallest lattice parameter is 3Å and the smallest d-spacings is 4Å then
it is impossible to determine the small lattice parameter. In such cases values of –999 will be ob-
tained. The following table gives the hkl coefficients corresponding to the Xnn reciprocal lattice
parameters for the 7 crystal systems.

 X0 X1 X2 X3 X4 X5

Cubic h2+k2+l2

Hexagonal, Trigonal h2+k2+h k l2

Indexing 246

246 Indexing

Tetragonal h2+k2 l2

Orhtorhombic h2 k2 l2

Monoclinic h2 k2 l2 h l

Triclinic h2 k2 l2 h k h l k l

21.7 ... *** Probable causes of Failure ***

The most probable cause of failure is the inclusion of too many d-spacings. If it is assumed that
the smallest lattice parameter is greater than 3Å then it is problematic to include d-spacings with
values less than about 2.5Å when there are already 30 to 40 reflections with d values greater than
2.5Å. Some of the problems caused by very low d-spacings are:

• The number of calculated lines increases dramatically and thus index_max_Nc_on_No will
need to be increased.

• The low d-spacings are probably inaccurate due to peak overlap.

A situation where it is necessary to include low d-spacings is when there are only a few d-spacings
available as in higher symmetry lattices.

21.8 ... Space groups with identical absences – Extinction subgroups

The following table lists spaces groups than have identical hkls. Typically, an indexing run will
identify one space-group from the extinction group.

Space group numbers with

identical hkls

Space group symbols with

identical hkls

Triclinic

1 2 P1 P-1

Monoclinic

9 15 Cc C2/c

5 8 12 C2 Cm C2/m

14 P21/c

7 13 Pc P2/c

4 11 P21 P21/m

3 6 10 P2 Pm P2/m

Orthorhombic

70 Fddd

43 Fdd2

22 42 69 F222 Fmm2 Fmmm

68 Ccca

73 Ibca

37 66 Ccc2 Cccm

45 72 Iba2 Ibam

41 64 Aba2 Cmca

Indexing 247

247 Indexing

46 74 Ima2 Imma

36 40 63 Cmc21 Ama2 Cmcm

39 67 Abm2 Cmma

20 C2221

23 24 44 71 I222 I212121 Imm2 Immm

21 35 38 65 C222 Cmm2 Amm2 Cmmm

52 Pnna

56 Pccn

60 Pbcn

61 Pbca

48 Pnnn

54 Pcca

50 Pban

33 62 Pna21 Pnma

34 58 Pnn2 Pnnm

32 55 Pba2 Pbam

30 53 Pnc2 Pmna

29 57 Pca21 Pbcm

27 49 Pcc2 Pccm

31 59 Pmn21 Pmmn

26 28 51 Pmc21 Pma2 Pmma

19 P212121

18 P21212

17 P2221

16 25 47 P222 Pmm2 Pmmm

Tetragonal

142 I41/acd

110 I41cd

141 I41/amd

109 122 I41md I-42d

108 120 140 I4cm I-4c2 I4/mcm

88 I41/a

80 98 I41 I4122

79 82 87 97 107 119 121 139 I4 I-4 I4/m I422 I4mm I-4m2 I-42m I4/mmm

130 P4/ncc

126 P4/nnc

133 P42/nbc

103 124 P4cc P 4/mcc

104 128 P4nc P 4/mnc

106 135 P42bc P 42/mbc

137 P42/nmc

138 P42/ncm

134 P42/nnm

125 P4/nbm

114 P-421c

105 112 131 P42mc P-42c P42/mmc

Indexing 248

248 Indexing

102 118 136 P42nm P-4n2 P42/mnm

101 116 132 P42cm P-4c2 P42/mcm

100 117 127 P4bm P-4b2 P4/mbm

86 P42/n

85 129 P4/n P4/nmm

92 96 P41212 P43212

94 P42212

76 78 91 95 P41 P43 P4122 P4322

77 84 93 P42 P 42/m P4222

90 113 P4212 P-421m

75 81 83 89 99 111 115 123 P4 P-4 P4/m P422 P4mm P-42m P-4m2 P4/mmm

Trigonal & Hexagonal

161 167 R3c R-3c

146 148 155 160 166 R3 R-3 R32 R3m R-3m

184 192 P6cc P6/mcc

159 163 186 190 194 P31c P-31c P63mc P-62c P63/mmc

158 165 185 188 193 P3c1 P-3c1 P63cm P-6c2 P63/mcm

169 170 178 179 P61 P65 P6122 P6522

144 145 151 152 153 154 171 172 180 181 P31 P32 P3112 P3121 P3212 P3221 P62 P64 P6222 P6422

173 176 182 P63 P63/m P6322

143 147 149 150 156 157 162 164 168 174 175

177 183 187 189 191

P3 P-3 P312 P321 P3m1 P31m P-31m P-3m1 P6 P-6 P6/m

P622 P6mm P-6m2 P-62m P6/mmm

Cubic

228 Fd-3c

219 226 F-43c Fm-3c

203 227 Fd-3 Fd-3m

210 F4132

196 202 209 216 225 F23 Fm-3 F432 F-43m Fm-3m

230 Ia-3d

220 I-43d

206 Ia-3

214 I4132

197 199 204 211 217 229 I23 I213 Im-3 I432 I-43m Im-3m

222 Pn-3n

218 223 P-43n Pm-3n

201 224 Pn-3 Pn-3m

205 Pa-3

212 213 P4332 P4132

198 208 P213 P4232

195 200 207 215 221 P23 Pm-3 P432 P-43m Pm-3m

21.9 ... Indexing Equations - Background

a, b and c lattice vectors can be converted to Cartesian coordinates with a collinear with the Car-
tesian x axis and b coplanar with the Cartesian x-y plane as follows:

Indexing 249

249 Indexing

a = ax i b = bx i + by j c = cx i + cy j + cz k (21-3)

where

ax = a

bx = b cos(), by = b sin()

cx = c cos(), cy = c (cos() – cos() cos()) / sin(), cz
2 = c2 − (cx)2– (cy)2

a, b, c are the lattice parameters and , , the lattice angles. The reciprocal lattice vectors A, B,
and C calculated from the lattice vectors of Eq. (21-3) become:

A = Ax i + Ay j + Az k B = By j + Bz k C = Cz k

The equation relating d-spacing dhkl to hkl in terms of the reciprocal lattice parameters is:

𝑋ℎℎℎ2 + 𝑋𝑘𝑘𝑘2 + 𝑋𝑙𝑙𝑙
2 + 𝑋ℎ𝑘ℎ 𝑘 + 𝑋ℎ𝑙ℎ 𝑙 + 𝑋𝑘𝑙𝑘 𝑙 = 1 𝑑ℎ𝑘𝑙

2⁄ (21-4)

where

𝑋ℎℎ = 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2

𝑋𝑘𝑘 = 𝐵𝑦
2 + 𝐵𝑧

2

𝑋𝑙𝑙 = 𝐶𝑧
2

𝑋ℎ𝑘 = 2𝐴𝑦𝐵𝑦 + 2𝐴𝑧𝐵𝑧

𝑋ℎ𝑙 = 2𝐴𝑧𝐶𝑧

𝑋𝑘𝑙 = 2𝐵𝑧𝐶𝑧

GUI Functionality 250

250 GUI Functionality

22. GUI FUNCTIONALITY

1.1 TOPAS is DPI aware

Monitors with a high number of Dots Per Inch (DPI), often display text that are too small. Windows
can scale fonts using Windows font scaling to enlarge text. This scaling is carried through to
TOPAS where fonts and bitmaps scale to the required size. Additionally, a thicker-text option
("Segoe UI Semibold") can be enabled if the TOPAS text appears too thin. The option is saved for
subsequent TOPAS loads and is enabled/disabled from the View menu:

After applying Windows scaling, TOPAS needs a Sign-Out and a Sign-In to display all text correctly
scaled. Also, for TOPAS to use its DPI capabilities, the properties of the executable needs to be
set to "Application", i.e.

1.2 Antialiasing and OpenGL

Enable Antialiasing on your graphics card to display smooth lines in OpenGL; this affects all
OpenGL displays. Depending on the graphics card Antialiasing can also be enabled on a program
specific manner.

GUI Functionality 251

251 GUI Functionality

1.3 Displaying a phase with and without background

Phases can be plotted with or without background by cycling through the three states
of the phase-display icon.

1.4 How atoms are displayed in OpenGL

Atoms colours and radii are defined in the files ATOM_COLORS.DEF and ATOM_RADIUS.DEF respec-
tively. A site defined as:

site S1 occ Al+3 1 beq 1

will be displayed as a Sulphur atom. If the Site Name, minus the numbers, is not found in
ATOM_COLOURS.DEF then the atom type defined at the first site occupancy is used. Thus, a site
defined as:

site _S1 occ Al+3 1 beq 1

will be displayed as an Aluminium atom.

1.5 x_calculation_step deleted when constant x-axis step size detected

*.XY and *.XYE data files are converted to a constant x-axis step size when a constant step size
is detected. When this occurs Version 7 removes the “Calc.Step” item from the GUI menus for the
corresponding data file. A small calculation step size can still be used by increasing “Conv. Steps”.
PRO files containing an x_calculation_step will still show an entry of x_calculation_step.

1.6 hide_peak_sticks

A GUI option that toggles the display of peak sticks in the scan window; the option can be found
at the Peaks phase level as follows:

GUI Functionality 252

252 GUI Functionality

22.1 ... TOF x-axis can be displayed as d-spacing, Q or tof

The x-axis of TOF data can be displayed as either tof, d-spacing or Q by cycling the x-
axis button.

22.1.1 Surface plots – 2D with offsets

This icon displays scans offset from one another, for example (see files in the directory
TEST_EXAMPLES\3D\):

The Quickzoom window is operational in all 2D-offset plots.

Pressing the Middle Mouse Button and moving the mouse changes the x and y offsets. This move-
ment greatly assists in determining the curvature of the surface. The QuickZoom display is not
offset allowing for two views of the same data.

22.1.2 Inserting peaks and identifying scans

Peaks can be inserted by pressing the Ctrl-Key and clicking the RMB. When the Ctrl key is pressed
a solid circle is displayed on the scan closest to the mouse. The circle is coloured to match the
scan lines and in addition the closest scan is displayed with a thickened line. Displayed at the bot-
tom of the plot is the name of the scan as seen by the arrow below. Peaks as well as excluded
regions move with the offsets.

GUI Functionality 253

253 GUI Functionality

When the Ctrl-Key is pressed the x and y axis values displayed on the status line are offset to
match the closest scan. Similarly, when the “For LAM Cursor” option is selected the LAM cursor is
changed to match the axis of the closest scan.

22.1.3 2D-offset Surface plots

2D-offset plots can be displayed as a 3D-Surface, for example:

These plots can be manipulated in real time; the 871 file TEST_EXAMPLES\JE-
PARA\D8_02999.RAW with over 4 million data points can be easily manipulated:

Pressing the Shift key whilst performing a Zoom (forming a box using the mouse) zooms into a
region. Zooming in this manner deselects scans for display. An unzoom is performed by

GUI Functionality 254

254 GUI Functionality

performing an Unzoom whilst holding down the Shift key. Colour schemes can be changed by us-
ing the Colours options:

Contour-Orange-15 looks like:

22.1.4 2D-offset Planview plots

Moving the y-offset such that it's at a maximum automatically produces a Planview; a Kaleido-
scope colour scheme gives:

GUI Functionality 255

255 GUI Functionality

The Standard colour scheme gives:

Zooming gives:

Planview can also have x-axis offsets with line scans overlain:

These line scans can include the calculated and/or difference patterns as well as patterns for
individual phases. Beneath the displayed line scans are their shadows. Colours are blended
across scans as well as across the x-axis to sharpen images.

989694929088868482807876747270686664626058565452504846444240383634323028262422201816141210

2,700

2,600

2,500

2,400

2,300

2,200

2,100

2,000

1,900

1,800

1,700

1,600

1,500

1,400

1,300

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

GUI Functionality 256

256 GUI Functionality

22.1.5 OpenGL Surface plots

OpenGL surface plots can be displayed alongside 2D-offset plots:

The scans displayed in the chart area are displayed to the right as a surface plot. Use RMB on the
surface plot for options; these are:

The OpenGL surface plot respects the 2D x-axis and y-axis display options. It is also aware of the
QuickZoom window and scrolling. Scrolling can be performed from either the 2D or 3D displays
using the Mouse Wheel. Navigation in the OpenGL window is as follows:

• Use the Moise Wheel to scroll the x-axis from either the 2D or 3D plots.

• RMB-Pressed and moving zooms.

• Pressing ‘x’ whilst rotating allows rotation around an axis vertical to the screen.

• Pressing ‘y’ whilst rotating allows rotation around an axis horizontal to the screen.

• Pressing ‘z’ whilst rotating allows rotation around an axis perpendicular to the screen.

• Pressing the Mouse Wheel button (as opposed to rotating the mouse wheel) moves the object
and hence the centre of rotation.

• When the Mouse is close to the Left or Right borders of the OpenGL window then rotation is
around an axis perpendicular to the computer screen. Very useful for positioning 3D objects.

GUI Functionality 257

257 GUI Functionality

Opening the OpenGL Text Dialog and clicking on the 3D surface writes text into the Text Dialog;
this text comprises the names of the two files bordering the polygon that has been clicked and
the average x and y values of the polygon, for example:

22.1.6 OpenGL – Weighted difference for colours

The RMB “Weight difference for colours” option displays colours corresponding to:

WtDiff = Abs(Yobs−Ycalc) / Weighting

22.2 ... Normalizing scans within a Scan Window

Displayed scans can be normalized using the option “Yobs Normalize” which is activated using the
RMB on the Scan window. Normalizing scales displayed scans such that the maximum values of
the displayed data are all equal. Normalizing is temporary and can be toggled on/off by executing
the “Yobs Normalize”. The following shows scans normalized with all the peaks on the right having
the same height.

22.3 ... Plotting phases above background

[fit_obj E [min_X !E] [max_X !E]]...
[fo_transform_X !E]
[fit_obj_phase !E]

By default, phases are plotted on top of back ground where back ground comprises fit_obj’s+bkg.
The xdd dependent gui_add_bkg and the fit_obj dependent fit_obj_phase can be used to change
the defaults, for example,

xdd ...
gui_add_bkg !E
fit_obj ...

fit_obj_phase !E

gui_add_bkg defaults to 1; if it’s zero then phases are not plotted above background. fit_obj_phase
defaults to 1. If gui_add_bkg=1 then the following is added to phases:

GUI Functionality 258

258 GUI Functionality

bkg + (and any fit_obj’s that has fit_obj_phase =1)

QUANT\QUANT-7.INP shows the use of fit_obj_phase=1 where a fit_obj that is a function of a user_y
object, that is supposed to be a phase, is plotted on top of back ground using a dummt_str; the
dummy_str checks the status of the fit_obj’s fit_obj_phase.

22.4 ... Plotting fit_objs

fit_obj’s can be plotted using the following macros:

macro Plot_Fit_Obj(p, name) {
 dummy_str
 phase_name name
 scale = p;
}

macro Plot_Fit_Obj(name) {
 dummy_str
 phase_name name
}

See TEST_EXAMPLES\VOIGT-APPROX\FIT-OBJ.INP for example; i.e.

xdd ...
fit_obj !f1 = ...
Plot_Fit_Obj(f1, “Fit Obj”)

Plotting is via a dummy_str with the scale parameter set to the name given to the fit_obj, which in
this case is f1. At the plotting stage the dummy_str borrows the calculated pattern from the
fit_obj. The scale parameter of the dummy_str has some intelligence built into it such that if scale
is not a function of a fit_obj name then it will search the place of the item it is a function of for a
calculated pattern. For example, in the following:

xdd ...
Plot_Fit_Obj(a, “Fit Obj”)
fit_obj = a ...

prm a ...

the ‘a’ parameter lives locally to the fit_obj as it is defined after the fit_obj. Defining the scale pa-
rameter of the dummy_str in terms of ‘a’ therefore allows the dummy_str to determine where to
find the calculated pattern to display. In this way macros such as the PV macro can be used and
plotted without having to define a name for the fit_obj, see TEST_EXAMPLES\PVS.INP. Sometimes
the fit_obj has no name and no parameter that belongs to it; instead of naming the fit_obj or rear-
ranging prm definitions the second Plot_Fit_Obj macro can be used:

xdd ...
fit_obj = ...
Plot_Fit_Obj(“plot previously defined fit_obj”)

Here the fit_obj defined prior to Plot_Fit_Obj is plotted.

GUI Functionality 259

259 GUI Functionality

22.5 ... Display of Normalized SigmaYobs^2

This icon displays normalized SigmaYobs2; useful for checking anomalies from VCT or
XYE files; here’s an example:

The normalization is as follows:

SigmaYobs^2 displayed = SigmaYobs^2 Sum[Yobs] / Sum[SigmaYobs^2]

This puts the display of SigmaYobs^2 on a similar scale to Yobs. For normal x-ray data Sig-
maYobs = Sqrt(Yobs) and hence nothing is done as the displayed plot would simply be equal to
Yobs. On some data sets, TOF for example, the magnitude of SigmaYobs can be small; therefore,
when refining on multiple data sets from different sources, the weighting schemes may need to
be modified in order to give the desired weight to the data sets.

22.6 ... Cumulative Chi2

A kernel operation that results in the following graphical display:

Uses the weighting from the kernel which can be user defined or otherwise. SigmaYobs is used
in the weighting if it exists. The Cumulative Chi2 it is normalized to have the maximum intensity
of Yobs within the display window. Data is obtained from the kernel and excluded regions are ig-
nored as shown in the plot above. Tabs for Cumulative Chi2 has been included in the appropriate
GUI tabs, ie.

8580757065605550454035302520

4

3.5

3

2.5

2

1.5

1

0.5

0

2Th (Degrees)

13012011010090807060504030

C
o

u
n

ts

50,000

40,000

30,000

20,000

10,000

0

-10,000

-20,000

GUI Functionality 260

260 GUI Functionality

22.7 ... Correlation Matrix display

A Correlation matrix window activated from the Fit Dialog; it operates in Launch or GUI modes.
Example output is as follows:

Both the A-matrix and the correlation matrix include penalties/restraints depending on whether
do_errors_include_penalties and/or do_errors_include_restraints are defined. The display of the
matrix can be zoomed using Ctrl-MouseWheel, here’s an example:

GUI Functionality 261

261 GUI Functionality

MouseMove over the correlation matrix displays a Hint comprising the corresponding parameter
names, values and errors. Left Mouse button down and dragging translates the matrix.

22.8 ... Fading a structure

The intensity of atom colours displayed in OpenGL can be adjusted using the Fade spin button of
the OpenGL grid options; for example:

22.9 ... Normals Plot

[normals_plot !E]...
[normals_plot_min_d !E]

An OpenGL plot of lattice plane Normals with the lengths of the Normals defined by normals_plot.
For example:

GUI Functionality 262

262 GUI Functionality

normals_plot = Abs(H * K + L^2) + 1; normals_plot_min_d 0.3

normals_plot_min_d is optional; small values (i.e. 0.1) could lead to millions of points and users
could blow up their computers. Here’s some output from the test example CLAY.INP:

The slider in the plot is activated by clicking on the button. This slider multiplies the length
of the normals_plot equation before generating the surface. The exact formulation for the multi-
plications is as follows.

Definitions:

s = multiplier which has a value (not shown to the user) that varies from 0 and 1.

N = diffraction vector directions with lengths given by the normals_plot equation.

N = Sqrt(N . N) = magnitude of N

Nmax = maximum N

Before generating the shape, N is multiplied by:

For s < 0.25

For 0.25 ≤ s < 0.5

For 0.5 < s ≤ 0.75

For 0.75 < s ≤ 1

: ((N / Nmax)^(4*s)) * N max / N

: ((N / Nmax)^(4*(0.5-s))) * Nmax / N

: (4*(0.5-s)) * Nmax / N + (1-s)

: (((4*(0.75-s)) + Nmax / N

22.10 . Improvements to the Grid

Data can be sorted by double clicking on column headings. Sorting alternates between ascending
and descending order. On leaving a grid the column most recently sorted is remembered. On re-
entry of that grid the data is again sorted according to the saved state. A small < or > sign is

GUI Functionality 263

263 GUI Functionality

displayed to the left of the column heading name. Sorting works for all grids that display data with
rows that are similar in Type; i.e. Peak data, sites etc... Val and Error columns are sorted numeri-
cally. Hkls, F^2 and other obvious numeric columns are also sorted numerically. However, Min and
Max are sorted using strings as they can be equations and hence their fields are strings.

CTRL-MouseWheel zooms/un-zooms the text of a grid.

MouseDownMouseMove for Panning.

22.11 . Mouse operation in OpenGL Graphics

First some definitions

LMB = Left Mouse Button

RMB = Right Mouse Button

MID = Mouse Wheel or Middle button on Laptops

MM = Mouse Moving

WM = Wheel moving

LMB-D = Left Mouse Button Down

RMB-D = Right Mouse Button Down

• MW-D = Mouse Wheel Down

• For example, LMB-D-MM is simply dragging with the LMD

Image rotation/translation operations are:

• LMB-D- MM rotates the image.

• LMB-D- MM and quick release initiates continuous rotation.

• LMD-D-MM on the first 10% of the viewport from the left or the last 10% from the right rotates
around an axis perpendicular to the screen. This is another way of doing what Shift-LMB-D-
MM does but without the need for keyboard input. 10% seems a good amount as it does not
seem to interfere with normal rotation.

• MW zooms in addition to the usual RMB-D-MM.

• MID-D-MM translates the image in the plane of the screen.

Images are rotated around the centre of gravity (or centre of unit cell) unless there’s a change
using the RMB-D options.

References 264

264 References

23. REFERENCES

Ainsworth, C. M.; Lewis, J. W.; Wang, C.; Johnstone, H. E.; Mendhis, B. G.; Brand, H. E. A.; Coelho,
A. A.; Evans, J.S.O. (2016). Chem. Mater. 28, 3184–3195. “3D Transition Metal Ordering and
Rietveld Stacking Fault Quantification in the New Oxychalcogenides La2O2Cu2–4xCd2xSe2”

aBaerlocher, C; Gramm, F.; Massüger, L; McCusker, L; He, Z; Hovmöller, S & Zou, X. (2007). SCIENCE
VOL 315 23 FEBRUARY 2007

bBaerlocher, C.; McCusker, L. B.; & Palatinus, L. (2007). Z. Kristallogr. 222, 47-53

Balzar, D. (1999). Microstructure Analysis from Diffraction, edited by R. L. Snyder, H. J. Bunge, and
J. Fiala, International Union of Crystallography, 1999. “Voigt-function model in diffraction line-
broadening analysis”

Bergmann, J., Kleeberg, R., Haase, A. & Breidenstein, B. (2000). Mat. Sci. Forum, 347-349, 303-
308. “Advanced Fundamental Parameters Model for Improved Profile Analysis”.

Brindley, G. W. (1945). Phil. Mag. 36, 347-369. “The effect of grain or particle size on X-ray reflections
from mixed powders and alloys, considered in relation to the quantitative determination of crys-
talline substances by X-ray methods”

Broyden, C. G. (1970). J. Inst. Maths. Appl., 6, 76-90. "The Convergence of a Class of Double-rank
Minimization Algorithms"

Cagliotti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Inst. 3, 223-228. “Choice of collimators for a crys-
tal spectrometer for neutron diffraction”

Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109-121. “A fundamental parameters approach
to X-ray line-profile fitting”

Cheary, R. W. & Coelho, A. A. (1994). J. Appl. Cryst. 27 (5), 673-681. “Synthesizing and fitting linear
position-sensitive detector step-scanned line profiles”

Cheary, R. W. & Coelho, A. A. (1998a). J. Appl. Cryst. 31, 851-861. “Axial divergence in a conventional
X-ray powder diffractometer I. Theoretical foundations”

Cheary, R. W. & Coelho, A. A. (1998b). J. Appl. Cryst. 31, 862-868. “Axial divergence in a conventional
X-ray powder diffractometer II. Implementation and comparison with experiment”

Cheary, R. W.; Coelho, A. A. and Cline, J. P. (2004). Journal of Research-National Institute of Stand-
ards and Technology, 109 (2004): 1-26. "Fundamental parameters line profile fitting in labora-
tory diffractometers"

Coelho, A. A. & Cheary, R. W. (1997). Computer Physics Communications, 104, 15-22. “A fast and
simple method for calculating electrostatic potentials”

Coelho, A. A. (2000). J. Appl. Cryst. 33, 899-908, "Structure Solution by Simulated Annealing"

Coelho, A. A. (2003). J. Appl. Cryst. 36, 86–95. “Indexing of powder diffraction patterns by iterative
use of singular value decomposition”.

References 265

265 References

Coelho, A. A. (2005). J. Appl. Cryst. 38, 455-461. "A bound constrained conjugate gradient solution
method as applied to crystallographic refinement problems"

Coelho, A. A. (2007). Acta Cryst. A36, 400–406. “A charge-flipping algorithm incorporating the tan-
gent formula for solving difficult structures”

Coelho, A. A; Evans, J.; Evans, I; Kern, A.; Parsons, S. (2011). Powder Diffraction, Vol. 26, Issue S1,
pages S22-S25, "The TOPAS symbolic computation system"

Coelho, A. A.; Chater, P.A.; Kern, A. (2015). J. Appl. Cryst. 48, Part 3, 869-875. “Fast synthesis and
refinement of the atomic pair distribution function”

Coelho, A. A.; Evans, J. S. O. & Lewis, J. W. (2016). J. Appl. Cryst. 49, 1740-1749. "Averaging the
intensity of many-layered structures for accurate stacking-fault analysis using Rietveld refine-
ment"

aCoelho, A. A. & Rowles, M. R. (2017). J. Appl. Cryst. 50, 1331-1340. "A capillary specimen aberration
for describing X-ray powder diffraction line profiles for convergent, divergent and parallel beam
geometries". https://doi.org/10.1107/S160057671701130X.

bCoelho, A. A. (2017). J. Appl. Cryst. 50 , 1323-1330. "An indexing algorithm independent of peak po-
sition extraction for X-ray powder diffraction patterns".
https://doi.org/10.1107/S1600576717011359.

aCoelho, A. A. (2018). J. Appl. Cryst. 51, 112-123. "Deconvolution of instrument and K contributions
from X-ray powder diffraction patterns using least squares with penalties".
https://doi.org/10.1107/S1600576717017988.

bCoelho, A. A. (2018). J. Appl. Cryst. 51, 210-218. "TOPAS & TOPAS-Academic: An optimization pro-
gram integrating computer algebra and crystallographic objects written in c++".
https://doi.org/10.1107/S1600576718000183

cCoelho, A. A. (2018). J. Appl. Cryst. 51, 428-435. “Optimum Levenberg-Marquardt constant deter-
mination for nonlinear least-squares"

Baerlocher, C; Gramm, F.; Massüger, L; McCusker, L; He, Z; Hovmöller, S & Zou, X. (2007). SCIENCE
VOL 315 23 FEBRUARY 2007.

Burla, C.B; Carrozzini, B.; Cascarano, G. L.; Giacovazzo C. & Polidori, G. (2011). J. Appl. Cryst. 44,
1143–1151

Chernick, M. R. (1999). Bootstrap Methods, A Practitioner’s Guide, Wiley, New York.

David, W. I. F; Matteo, L.; Scardi, P. (2010). Materials Science Forum Vol. 651 pp 187-200

DiCiccio, T. J. & Efron, B. (1996). Bootstrap confidence intervals (with discussion), Statistical Sci-
ence 11, 189–228.

Durbin, J. & Watson, G. S. (1971). Biometrika. 58, 1-19. “Testing for Serial Correlation in Least Square
Regression, III”

Efron, B. & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals and
other measures of statistical accuracy, Statistical Science 1, 54–77.

https://doi.org/10.1107/S160057671701130X
https://doi.org/10.1107/S1600576717011359
https://doi.org/10.1107/S1600576717017988
https://doi.org/10.1107/S1600576718000183

References 266

266 References

Favre-Nicolin, V; Cerny, R. (2002). J. Appl. Cryst. 35 (6), 734-743.

Fletcher, R. (1970). Comput. J., 13, 317-322. "A New Approach to Variable Metric Algorithms"

Finger, L. W., Cox, D. E & Jephcoat, A.P. (1994). J. Appl. Cryst. 27, 892-900. “A correction for powder
diffraction peak asymmetry due to axial divergence”

Flack, H. D. (1983). Acta Cryst. A39, 876-881

Goldfarb, D. (1970). Math. Comp., 24, 23-26. “A Family of Variable Metric Updates Derived by Varia-
tional Means”

Hauptman, H. & Karle, J. (1956). Acta Cryst. 9, 635

Hill, R. J. & Flack, H. D. (1987). J. Appl. Cryst. 20, 356-361. “The Use of the Durbin-Watson d Statistic
in Rietveld Analysis”

Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. (1997). Physical Review A, 56, 4554-
4568. “K1,2 and K1,2 X-ray emission lines of the 3d transition metals”

Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531. “Application of symmetrized harmonics expansion
to correction of the preferred orientation effect”

Johnson, C. K. & Levy, H. A. (1974). International Tables for X-ray Crystallography, IV, 311 - 336.
“Thermal-motion analysis using Bragg diffraction data”

Kopp, Joachim. (2006). Int.J.Mod.Phys. C19:523-548,2008

Leoni, M.; Di Maggio, R.; Polizzi, S; Scardi P. (2004), J. Am. Ceram. Soc. 87, 1133-1140.

Lister, S. E.; Radosavljevic Evans, I.; Howard, J. A. K.; Coelho A. and Evans, J. S. O. (2004). Chem-
ical Communications, Issue 22.

March, A. (1932). Z. Krist. 81, 285-297. “Mathematische Theorie der Regelung nach der Korngestalt
bei affiner Deformation”

Markvardsen, A. J.; David, W. I. F.; Johnston, J. and Shankland K. (2001), Acta Cryst. A57, 47

Marquardt, D. W. (1963). J. Soc. Ind. Appl. Math. 11(2), 431-331. “An algorythm for least-squares es-
timation of nonlinear parameters”

Mooers, B. H. M. (2016). Acta Cryst. D72, 477–487

O'Connor, B. H.; and Raven, M. D. (1988). Powder Diffraction, Vol. 3, No. 1. "Application of the Rietveld
Refinement Procedure in Assaying Powdered Mixtures"

Oszlányi, G. & Süto A. (2004). Acta Cryst. A60, 134-141

Oszlányi, G. & Süto A. (2005). Acta Cryst. A61, 147-152

Oszlányi, G. & Süto A. (2006). Acta Cryst. A63, 156–163

Oszlányi, G.; Süto A.; Czugler, M. & Parkanyi, L. (2006). J. AM. CHEM. SOC. 9 VOL. 128, NO. 26, 8393.
“Charge Flipping at Work: A Case of Pseudosymmetry”.

References 267

267 References

Pawley, J. S. (1981). J. Appl. Cryst. 14, 357

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.

Scardi, P. & Leoni, M. (2001). Acta Cryst. A 57, 604-613.

Shanno, D. F. (1970). Mathematics of Computing, Vol. 24, pp 647-656. "Conditioning of Quasi-Newton
Methods for Function Minimization"

Favre-Nicolin, V. and Cerny, R. (2002) EPDIC 8 proceedings. “Fox: Modular Approach to Crystal
Structure Determination from Powder Diffraction”

Sabine, T. M., Hunter, B. A., Sabine, W. R., Ball, C. J. (1998): J. Appl. Cryst. 31, 47-51

Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779. “Substructure solution with
SHELXD“

Shiono, M. & Woolfson, M. M. (1992). Acta Cryst. A48, 451-456

Whitfield, P. S. and Coelho, A. A. (2016). J. Appl. Cryst. 49, 1806-1809. "Asymmetric band flipping for
time-of-flight neutron diffraction data".

Young, R. A. (1993). The Rietveld Method, edited by R.A. Young, IUCr Book Series, Oxford University
Press 1993, 1-39. “Introduction to the Rietveld method”

	1. Introduction
	1.1 Conventions
	1.2 Input file example (INP format)
	1.3 Test examples
	1.4 TC-INPS.BAT and the aac$ macro
	1.5 TOPAS is 64 bit
	1.6 Limiting Memory Usage – MaxMem.TXT

	2. Parameters
	2.1 When is a parameter refined
	2.2 User defined parameters - the prm keyword
	2.3 Parameter constraints
	2.4 The local keyword
	2.5 Reporting on equation values
	2.6 Naming of equations
	2.7 existing_prm
	2.8 String_To_Variable and Double_To_String functions
	2.9 dummy and dummy_prm keywords
	2.10 Parameter errors and correlation matrix
	2.11 Default parameter limits and LIMIT_MIN / LIMIT_MAX
	2.12 Reserved parameter names
	2.13 Val and Change reserved parameter names
	2.14 Using local to assist in using “for ... {}” loops
	2.15 out_dependences and out_dependences_for
	2.16 The num_runs keyword and preprocessor specifics
	2.16.1 Reserved macro names
	2.16.2 The #list directive – creating arrays of macros
	2.16.3 The File_Variable and File_Variables macro

	3. Equation Operators and Functions
	3.1 'If' and nested 'If' statements
	3.2 Floating point exceptions

	4. The Minimization Routines
	4.1 The Conjugate Gradient Solution method
	4.2 The Marquardt method
	4.3 Approximating the A matrix - the BFGS method
	4.4 Line minimization and Parameter extrapolation
	4.5 Restraints and Penalties
	4.6 Minimizing on penalties only
	4.7 Saved refined values and save_best_chi2
	4.8 Error calculation
	4.9 Error determination using SVD and bootstrap errors
	4.10 Error Propagation using prm_with_error
	4.11 xdd_sum and xdd_array
	4.12 Refining on an arbitrary Chi2
	4.13 Informing on unrefined parameters
	4.14 Summary, Iteration and Refinement Cycle
	4.15 quick_refine and computational issues
	4.16 Simulated annealing and Auto_T
	4.17 Adaptive step size using randomize_on_errors
	4.18 Criteria of fit

	5. Peak Generation and "peak_type"
	5.1 Source emission profiles
	5.2 Peak generation and peak types
	5.3 Convolution and the peak generation stack
	5.4 Speed / Accuracy and peak_buffer_step
	5.5 The peaks buffer, speed and memory considerations
	5.6 An Accurate Voigt

	6. Fast simultaneous refinement of 1000s of patterns
	6.1 Example refinement of 1000s of patterns

	7. Amazon EC2 cloud computing
	7.1 Operation
	7.2 Pre-requisites
	7.3 Pricing of AWS cloud resources
	7.4 AWS dashboard and operating TC-Cloud
	7.5 Installing AWS CLI on the local computer
	7.6 Operating TC-Cloud from TOPAS (GUI)
	7.7 Terminating/Stopping TC-VMs and tc-mon.a
	7.8 Powering off TC-VMs after 100 minutes of inactivity
	7.9 Retrieving the INP or FC file that gave the best GOF
	7.10 Monitoring, TC-Cloud is independent of the local computer
	7.11 Random number generator automatically seeded
	7.12 CLOUD__ #define and Get(cloud_run_number)
	7.13 ‘Setup Cloud’ details
	7.14 ‘Virtual Machines’ tab options
	7.15 Creating TC-VMs – Spot Instances
	7.16 Choosing the optimum VM type
	7.17 Unable to connect to TC-VMs after local computer restart

	8. Protein Refinement
	8.1 Reading Protein Data Bank (PDB) CIF files
	8.2 Protein Refinement, 6y84, SARS-CoV-2 main protease

	9. Solving proteins at atomic resolution
	9.1 Ab initio solution of triclinic 4lzt
	9.2 Solution of non-triclinic lattices using a known atomic position
	9.3 Ab initio solution of 5da6 in space group R32

	10. Deconvolution
	10.1 Deconvolution – Simulated pattern

	11. PDF-Generation, generating the Pair Distribution Function
	11.1 PDF-Generating - LiFePO4
	11.1.1 Operation 0 – Fitting peaks to the diffraction pattern
	11.1.2 Operation 1 – Generation G(r) from the fitted peaks
	11.1.3 Correcting the PDF due to a zero error in reciprocal space
	11.1.4 Generating F(Q) from G(r) - gr_to_fq
	11.1.5 PDF-Generating - Fullerene

	12. PDF refinement
	12.1 pdf_only_eq_0
	12.2 Inter and Intra molecule FWHMs
	12.3 Instrument Sinc function sinc-1.inp
	12.4 Weighting of PDF and 2-Theta type data
	12.5 Test_examples\pdf\beq-2.inp
	12.6 Test_examples\pdf\beq-3.inp
	12.7 Speeding up refinement with rebin_with_dx_of
	12.8 Refining on beq parameters
	12.9 Structure Solution, Simulated Annealing
	12.10 Rigid bodies with PDF data
	12.11 Occupancy merging with PDF data
	12.12 Equivalence of pdf_gauss_fwhm and beq for one atom type

	13. Stacking faults
	13.1 Fitting to a Debye-formulae pattern using ‘stack’
	13.2 Fitting to Kaolinite data
	13.3 Stacking faults and generating sequences of layers
	13.3.1 Generating the same stacking sequences each run
	13.3.2 The SF_Smooth macro
	13.3.3 Fitting to DIFFaX test diamond data
	13.3.4 Stacking faults from layers of different layer heights
	13.3.5 Rietveld-Generated example
	13.3.6 Refining on layer heights

	14. Quantitative Analysis
	14.1 Elemental weight percent constraint
	14.2 Elemental composition and Restraints
	14.3 Amorphous phase composition
	14.4 Using a dummy_str phase to describe amorphous content
	14.5 Quant using hkl_Is or other non-str phases
	14.6 Summary of Quant examples
	14.7 External standard method
	14.8 QUANT Keywords

	15. Magnetic Structure Refinement
	15.1 Magnetic refinement warnings/exceptions
	15.2 Displaying Magnetic moments
	15.3 ‘Decomposing’ Fmag for speed

	16. Rigid bodies
	16.1 Fractional, Cartesian and Z-matrix coordinates
	16.2 Translating part of a rigid body
	16.3 Rotating part of a rigid body around a point
	16.4 Rotating part of a rigid body around a line
	16.4.1 Using Z-matrix together with rotate and translate

	16.5 The simplest of rigid bodies
	16.6 Generation of rigid bodies
	16.7 Rigid body parameter errors propagated to fractional coordinates
	16.8 Z-matrix collinear error information
	16.9 Functions allowing access to rigid-body fractional coordinates
	16.10 Determining the orientation of a known fragment using a Rigid-Body
	16.11 Rigid body macros

	17. Miscellanous
	17.1 Threading
	17.1.1 Setting the maximum number of threads

	17.2 Restraining background using the Bkg_at function
	17.3 Calculation of structure factors
	17.3.1 Friedel pairs
	17.3.2 Powder data
	17.3.3 Single crystal data
	17.3.4 The Flack parameter
	17.3.5 Single Crystal Output

	17.4 Convolution
	17.4.1 Instrument and sample convolutions
	17.4.2 Convolutions in general
	17.4.3 Capillary convolution for a focusing convergent beam
	17.4.4 ft_conv
	17.4.4.1 ft_conv compared to user_defined_convolution
	17.4.4.2 FFT versus direct summation

	17.4.5 WPPM
	17.4.5.1 WPPM in 2Th space
	17.4.5.2 WPPM using fit_obj(s)
	17.4.5.3 WPPM using WPPM_ft_conv

	17.4.6 Microstructure convolutions
	17.4.6.1 Preliminary equations
	17.4.6.2 Crystallite size and strain

	17.5 Loading of INP files
	17.5.1 if {} else if {} else {}

	17.6 Functions – fn, def, return, noinline
	17.6.1 Subject independent single crystal refinement
	17.6.2 Computer algebra and out_refinement_stats

	17.7 CIF
	17.8 Large refinements with tens of 1000s of parameters
	17.9 Laue refinement
	17.10 Learnt Shapes for Background or Otherwise
	17.11 Emission Profile with Absorption Edges
	17.12 scale_phase_X keyword
	17.13 Refining on f0, f’ and f”
	17.13.1 Using a user defined table to input f0 values via user_y

	17.14 Invalid f1 and f11
	17.15 Isotopes and Atom Names
	17.16 Atomic data files and associated sources
	17.17 Removing Phases during a refinement
	17.18 Numerical Lorentzian and Gaussian Convolutions
	17.19 Space groups, hkls and symmetry operators
	17.19.1 User defined rotational matrices

	17.20 Site identifying strings
	17.21 Occupancies and symmetry operators
	17.22 Pawley and Le Bail extraction
	17.23 Anisotropic refinement models
	17.23.1 Spherical harmonics
	17.23.2 Miscellaneous models using User defined equations

	17.24 Simulated annealing and structure determination
	17.24.1 Penalties used in structure determination
	17.24.2 Bond length restraints

	17.25 File types and formats
	17.26 Batch mode operation – TC.EXE

	18. Keywords
	18.1 Data structures
	18.2 Alphabetical listing of keywords
	18.3 Keywords to simplify User input
	18.3.1 The "load { }" keyword and attribute equations
	18.3.2 The "move_to $keyword" keyword
	18.3.3 The "for xdds { }" and "for strs { }" constructs

	19. Macros and Include files
	19.1 The macro directive
	19.1.1 Directives with global scope
	19.1.2 Pre-processor equations and #prm, #if, #elseif, #out
	19.1.3 Directives invoked on macro expansion
	19.1.4 Defining unique parameters within macros
	19.1.5 Superfluous parentheses and the '&' Type for macros

	19.2 Overview
	19.2.1 xdd macros
	19.2.2 Lattice parameters
	19.2.3 Emission profile macros
	19.2.4 Instrument and instrument convolutions
	19.2.5 Phase peak_type's
	19.2.6 Quantitative Analysis
	19.2.7 2Th Corrections
	19.2.8 Intensity Corrections
	19.2.9 Bondlength penalty functions
	19.2.10 Reporting macros
	19.2.11 Neutron TOF
	19.2.12 Miscalleneous

	20. Charge-flipping
	20.1 Charge-flipping usage
	20.1.1 Perturbations
	20.1.2 The Ewald sphere, weak reflections and CF termination
	20.1.3 Powder data considerations
	20.1.3.1 Powder data, the A matrix and the Tangent formula
	20.1.3.2 The algorithm of Oszlányi & Süto (2005) and F000

	20.2 Charge-flipping Investigations / Tutorials
	20.2.1 Preventing uranium atom solutions using pick_atoms
	20.2.2 The tangent formula on powder data
	20.2.3 Pseudo symmetry – 441 atom oxide
	20.2.4 Origin finding and symmetry_obey_0_to_1
	20.2.5 symmetry_obey_0_to_1 on poor resolution data
	20.2.6 Sharpening clouds - extend_calculated_sphere_to
	20.2.7 A difficult powder, CF-SUCROSE.INP
	20.2.8 Increasing contrast in R-factors

	20.3 Charge Flipping and neutron_data
	20.4 Charge-flipping Examples
	20.5 Keywords in detail

	21. Indexing
	21.1 Figure of merit
	21.2 Extinction subgroup determination
	21.3 Reprocessing solutions - DET files
	21.4 Keywords and data structures
	21.5 Keywords in detail
	21.6 Identifying dominant zones
	21.7 *** Probable causes of Failure ***
	21.8 Space groups with identical absences – Extinction subgroups
	21.9 Indexing Equations - Background

	22. GUI Functionality
	1.1 TOPAS is DPI aware
	1.2 Antialiasing and OpenGL
	1.3 Displaying a phase with and without background
	1.4 How atoms are displayed in OpenGL
	1.5 x_calculation_step deleted when constant x-axis step size detected
	1.6 hide_peak_sticks
	22.1 TOF x-axis can be displayed as d-spacing, Q or tof
	22.1.1 Surface plots – 2D with offsets
	22.1.2 Inserting peaks and identifying scans
	22.1.3 2D-offset Surface plots
	22.1.4 2D-offset Planview plots
	22.1.5 OpenGL Surface plots
	22.1.6 OpenGL – Weighted difference for colours

	22.2 Normalizing scans within a Scan Window
	22.3 Plotting phases above background
	22.4 Plotting fit_objs
	22.5 Display of Normalized SigmaYobs^2
	22.6 Cumulative Chi2
	22.7 Correlation Matrix display
	22.8 Fading a structure
	22.9 Normals Plot
	22.10 Improvements to the Grid
	22.11 Mouse operation in OpenGL Graphics

	23. References

