Trace:

# Differences

This shows you the differences between two versions of the page.

integral_breadth [2018/03/19 08:05] rowlesmr3 |
integral_breadth [2020/07/16 11:29] |
||
---|---|---|---|

Line 1: | Line 1: | ||

- | ====== Integral Breadth ====== | ||

- | |||

- | The integral breadth is an alternative definition of a peak width; it is the width of a rectangle with the same height as the peak. | ||

- | |||

- | There are some macros below that give the IB of a peak given its parameters. | ||

- | |||

- | See also [[peak_shapes]]. | ||

- | |||

- | Macro by: Matthew Rowles. | ||

- | |||

- | |||

- | <code topas> | ||

- | '' when using an xo_Is phase with peak_type = pv | ||

- | ''calculate pseudo-Voigt integral breadth from pv_lor and pv_fwhm parameters | ||

- | macro & Integral_Breadth_PV(& lor, & fwhm) | ||

- | { | ||

- | fwhm / (lor (2/Pi) + (1-lor) 2 Sqrt(Ln(2)/Pi)) | ||

- | } | ||

- | |||

- | macro & Integral_Breadth_G(& fwhm) | ||

- | { | ||

- | fwhm / (2 Sqrt(Ln(2)/Pi)) | ||

- | } | ||

- | |||

- | macro & Integral_Breadth_L(& fwhm) | ||

- | { | ||

- | fwhm / (2/Pi) | ||

- | } | ||

- | |||

- | macro & Integral_Breadth_PVII(& m, & fwhm) | ||

- | { | ||

- | (fwhm Sqrt(Pi) Gamma_Approx(m-0.5)) / (2 Sqrt(2^(1/m) - 1) Gamma_Approx(m)) | ||

- | } | ||

- | </code> | ||