Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
k-factor [2016/07/05 10:56]
martin_fisch
k-factor [2016/07/05 10:58]
martin_fisch
Line 1: Line 1:
-====== ​DAC_Abs_Correction ​====== +====== ​K-Factor Quantification ​====== 
-Description: ​Absorption correction ​for diamond anvil cell data. Corrects intensity decrease with increasing 2-Theta due to longer beam paths through diamonds.+Description: ​Input file example ​for simultaneous refinement of the external standard and sample ​data file
  
-Comment: ​Actually not a macro, ​the structure of diamond in included with a scale factor of zero to calculate ​the correct value for u_per_cm_diamond for any given wavelength.+Comment: ​THis has the advantage that errors are propagated correctly, MAC's are calculated energy independent and even XRF esd's cen be propagated ​to the final result (requires Topas 6).
  
 Contributed by: Martin Fisch Contributed by: Martin Fisch
  
 <code topas> <code topas>
-scale_pks ​Exp( - u_per_cm_diamond ​* ( 1 - 1/Cos(Deg * 2 * Th))); +do_errors 
-str +no_LIMIT_warnings 
-phase_name "​Diamond"​ + 
-Cubic(3.56672  ​ +'​-------------------------------------------------------- 
-scale 0 +' K Factor calculation from external standard starts here 
-space_group "Fd-3mS" +' O'​Connor & Raven, Powder Diffraction 3(1) (1988) 2-6 
-prm u_per_cm_diamond ​= (Get(phase_MAC) ​1.6605402 ​Get(cell_massGet(cell_volume));: 0 +'​-------------------------------------------------------- 
-site C x occ C beq 1+ 
 +xdd "​External_Standard_Corundum.xy"​ 'XRD Pattern of external standard 
 +rebin_with_dx_of 0.02 
 + 
 +r_wp  0 r_exp  0 r_p  0 gof  0 
 + 
 +bkg @  0 0 0 0 0 0 
 +Specimen_Displacement(SD_Corundum,​ 0) 
 + 
 +start_X 20 
 + 
 +str '​Többens,​ D.M. et al., Mat. Sci. Forum 378 (2001) 288-293 
 +phase_name "​Corundum"​ 
 +a a_Corundum ​ 4.76 min 4.74 max 4.78  
 +Get(a); 
 +c c_Corundum ​ 12.99 min 12.9 max 13.1 
 +ga 120 
 +space_group 167 
 +site Al1 x =0;    y =0; z 0.3522 occ AL+3 1 beq 0.30 
 +site O1  x 0.6937 y =0; z =1/4;  occ O-2  1 beq 0.33 
 + 
 +scale Scale_Corundum ​ 0.00001 
 + 
 +CS_L(CSL_Corundum,​ 400 min 50 max 5000) 
 +Strain_L(StrainL_Corundum,​ 0.01 min 0.001 max 1) 
 + 
 +cell_volume Volume_Corundum ​ 0 
 +cell_mass Mass_Corundum ​ 0 
 +phase_MAC MAC_Corundum ​ 0 
 +weight_percent WP_Corundum 0 
 + 
 +prm !Crystallinity_Corundum 98 
 + 
 +prm Corundum_Lac = Get(mixture_MAC) Get(mixture_density_g_on_cm3);:​ 0 
 + 
 +'​Calculation of K-Factor from external standard 
 +prm !KFactor = Scale_Corundum ​* ( 1.660538921 * (Mass_Corundum/​Volume_Corundum) ) * Volume_Corundum^2 * MAC_Corundum ​ / (Crystallinity_Corundum) ;: 0 
 + 
 +'Macro for wt.-% from scale, MAC, cell volume and KFactor 
 +macro wt_percent_K_MAC(result) { prm = ( ( Get(scale) * ( 1.660538921 * (Get(cell_mass)/Get(cell_volume)) ) (Get(cell_volume))^2MAC_Sample ​/ KFactor ;: result } 
 + 
 +'Dummy phases are used for energy dependent oxide MAC calculation 
 +macro d_str { dummy_str space_group P1 scale 0 a 1 b 1 c 1 site } 
 +d_str Si occ Si+4 = 1; site O  occ O-2  = 2; prm MAC_SiO2 ​   = Get(phase_MAC); :  35.81264 
 +d_str Al occ Al+3 = 2; site O  occ O-2  = 3; prm MAC_Al2O3 ​  = Get(phase_MAC); :  31.59020 
 +d_str Fe occ Fe+3 = 2; site O  occ O-2  = 3; prm MAC_Fe2O3 ​  = Get(phase_MAC);​ :  214.26272 
 +d_str Ca occ Ca+2 = 1; site O  occ O-2  = 1; prm MAC_CaO ​    = Get(phase_MAC);​ :  124.46608 
 +d_str Mg occ Mg+2 = 1; site O  occ O-2  = 1; prm MAC_MgO ​    = Get(phase_MAC); :  28.61699 
 +d_str S  occ S    = 1; site O  occ O-2  = 3; prm MAC_SO3 ​    = Get(phase_MAC);​ :  44.15801 
 +d_str K  occ K+1  = 2; site O  occ O-2  = 1; prm MAC_K2O ​    = Get(phase_MAC); :  122.06126 
 +d_str Na occ Na+1 = 2; site O  occ O-2  = 1; prm MAC_Na2O ​   = Get(phase_MAC);​ :  24.93736 
 +d_str Ti occ Ti+4 = 1; site O  occ O-2  = 2; prm MAC_TiO2 ​   = Get(phase_MAC);​ :  124.23941 
 +d_str Sr occ Sr+2 = 1; site O  occ O-2  = 1; prm MAC_SrO ​    Get(phase_MAC); :  97.04589 
 +d_str P  occ P    = 2; site O  occ O-2  = 5; prm MAC_P2O5 ​   = Get(phase_MAC); :  39.33911 
 +d_str Mn occ Mn+3 = 2; site O  occ O-2  = 3; prm MAC_Mn2O3 ​  = Get(phase_MAC);​ :  191.01235 
 +d_str Cr occ Cr+3 = 2; site O  occ O-2  = 3; prm MAC_Cr2O3 ​  = Get(phase_MAC);​ :  172.14416 
 +d_str C  occ C    = 1; site B  occ O-2  = 2; prm MAC_LOI_CO2 = Get(phase_MAC);​ :  9.57292 
 +d_str H  occ H    = 2; site O  occ O-2  = 1; prm MAC_LOI_H2O = Get(phase_MAC); :  10.23680 
 +d_str La occ La+3 = 1; site B  occ B    = 6; prm MAC_LaB6 ​   = Get(phase_MAC); :  237.33852 
 +d_str Zr occ Zr+4 = 1; site Si occ Si+4 = 1; site O occ O-2  = 4; prm MAC_ZrSiO4 = Get(phase_MAC); :  ​83.19554 
 + 
 +'​----------------------------------------------------------------------------- 
 +' Part for phase quantification in sample using external standard starts here 
 +'​----------------------------------------------------------------------------- 
 + 
 +xdd "​Sample_Pattern.xy"​ 'XRD Pattern of sample 
 +rebin_with_dx_of ​0.02 
 + 
 +r_wp  0 r_exp  0 r_p  0 gof  0 
 + 
 +bkg @ 0 0 0 0 0 0 
 +Specimen_Displacement(@,​ 0) 
 + 
 +'XRF wt.-% data of sample (change prm_with_error to prm for version 5) 
 +prm_with_error !SiO2     0_0 
 +prm_with_error !Al2O3 ​   0_0 
 +prm_with_error !Fe2O3 ​   0_0 
 +prm_with_error !CaO      0_0 
 +prm_with_error !MgO      0_0 
 +prm_with_error !SO3      0_0 
 +prm_with_error !K2O      0_0 
 +prm_with_error !Na2O     0_0 
 +prm_with_error !TiO2     0_0 
 +prm_with_error !SrO      0_0 
 +prm_with_error !P2O5     0_0 
 +prm_with_error !Mn2O3 ​   0_0 
 +prm_with_error !Cr2O3 ​   0_0 
 +prm_with_error !ZrSiO4 ​  0_0 
 +prm_with_error !LaB6     0_0 
 +prm_with_error !LOI_CO2 ​ 0_0 'Loss on ignition 
 +prm_with_error !LOI_H2O ​ 10_0 'Loss on ignition 
 + 
 +'MAC calculation from XRF data 
 +prm !MAC_Sample =  
 +SiO2*0.01*MAC_SiO2 + Al2O3*0.01*MAC_Al2O3 +  
 +Fe2O3*0.01*MAC_Fe2O3 + CaO*0.01*MAC_CaO +  
 +MgO*0.01*MAC_MgO + SO3*0.01*MAC_SO3 + K2O*0.01*MAC_K2O +  
 +Na2O*0.01*MAC_Na2O + TiO2*0.01*MAC_TiO2 + SrO*0.01*MAC_SrO +  
 +P2O5*0.01*MAC_P2O5 + Mn2O3*0.01*MAC_Mn2O3 + Cr2O3*0.01*MAC_Cr2O3 +  
 +ZrSiO4*0.01*MAC_ZrSiO4 + LaB6*0.01*MAC_LaB6 + LOI_CO2*0.01*MAC_LOI_CO2 +  
 +LOI_H2O*0.01*MAC_LOI_H2O;:​ 0 
 + 
 + ​ str 
 + ​ phase_name "Phase in sample"​ 
 +  a 
 +  b 
 + ​ c ​  
 + ​ al 
 + ​ be 
 + ​ ga 
 + ​ volume 
 + ​ space_group 
 +  site 
 + ​ ... 
 + ​ ... 
 + ​ ... 
 + ​ weight_percent 
 + ​ CS_L 
 + ​ Strain_L 
 + ​ scale 
 + ​ wt_percent_K_MAC( ​0) 'This macro reports phase amounts using the K-factor method 
 + 
 +   
 +for xdds { '​Instrument description for both XDD'​s 
 + lam ymin_on_ymax ​0.0001 
 + Lam_recs 
 +0.0159  ​1.534753 ​ 3.6854 
 +   0.5691  ​1.540596 ​ 0.4370 
 +   0.0762 ​ 1.541058 ​ 0.6000 
 +   0.2517 ​ 1.544410 ​ 0.5200 
 +   0.0871 ​ 1.544721 ​ 0.6200 } 
 + LP_Factor(0) 
 + Rp 240 
 + Rs 240 
 + Slit_Width(0.07) 
 + Divergence (0.25) 
 + axial_conv 
 +   filament_length 12 
 +   sample_length 10 
 +   receiving_slit_length 15 
 +   primary_soller_angle 2.55 
 +   secondary_soller_angle 2.55 }
 </​code>​ </​code>​

Personal Tools