Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
k-factor [2016/07/05 10:56]
martin_fisch
k-factor [2016/07/05 10:59]
martin_fisch
Line 1: Line 1:
-====== ​DAC_Abs_Correction ​====== +====== ​K-Factor Quantification ​====== 
-Description: ​Absorption correction ​for diamond anvil cell data. Corrects intensity decrease with increasing 2-Theta due to longer beam paths through diamonds.+Description: ​Input file example ​for simultaneous refinement of the external standard and sample ​data file
  
-Comment: ​Actually not a macrothe structure of diamond in included with a scale factor of zero to calculate ​the correct value for u_per_cm_diamond for any given wavelength.+Comment: ​Errors are propagated correctlyMAC's are calculated energy independent and even XRF esd's are propagated ​to the final result (requires Topas 6).
  
 Contributed by: Martin Fisch Contributed by: Martin Fisch
  
 <code topas> <code topas>
-scale_pks ​Exp( - u_per_cm_diamond ​* ( 1 - 1/Cos(Deg * 2 * Th))); +do_errors 
-str + 
-phase_name "​Diamond"​ +'​-------------------------------------------------------- 
-Cubic(3.56672  ​ +' K Factor calculation from external standard starts here 
-scale 0 +' O'​Connor & Raven, Powder Diffraction 3(1) (1988) 2-6 
-space_group "Fd-3mS" +'​-------------------------------------------------------- 
-prm u_per_cm_diamond ​= (Get(phase_MAC) ​1.6605402 ​Get(cell_massGet(cell_volume));: 0 + 
-site C x occ C beq 1+xdd "​External_Standard_Corundum.xy"​ 'XRD Pattern of external standard 
 +rebin_with_dx_of 0.02 
 + 
 +r_wp  0 r_exp  0 r_p  0 gof  0 
 + 
 +bkg @  0 0 0 0 0 0 
 +Specimen_Displacement(SD_Corundum,​ 0) 
 + 
 +start_X 20 
 + 
 +str '​Többens,​ D.M. et al., Mat. Sci. Forum 378 (2001) 288-293 
 +phase_name "​Corundum"​ 
 +a a_Corundum ​ 4.76 min 4.74 max 4.78  
 +Get(a); 
 +c c_Corundum ​ 12.99 min 12.9 max 13.1 
 +ga 120 
 +space_group 167 
 +site Al1 x =0;    y =0; z 0.3522 occ AL+3 1 beq 0.30 
 +site O1  x 0.6937 y =0; z =1/4;  occ O-2  1 beq 0.33 
 + 
 +scale Scale_Corundum ​ 0.00001 
 + 
 +CS_L(CSL_Corundum,​ 400 min 50 max 5000) 
 +Strain_L(StrainL_Corundum,​ 0.01 min 0.001 max 1) 
 + 
 +cell_volume Volume_Corundum ​ 0 
 +cell_mass Mass_Corundum ​ 0 
 +phase_MAC MAC_Corundum ​ 0 
 +weight_percent WP_Corundum 0 
 + 
 +prm !Crystallinity_Corundum 98 
 + 
 +prm Corundum_Lac = Get(mixture_MAC) Get(mixture_density_g_on_cm3);:​ 0 
 + 
 +'​Calculation of K-Factor from external standard 
 +prm !KFactor = Scale_Corundum ​* ( 1.660538921 * (Mass_Corundum/​Volume_Corundum) ) * Volume_Corundum^2 * MAC_Corundum ​ / (Crystallinity_Corundum) ;: 0 
 + 
 +'Macro for wt.-% from scale, MAC, cell volume and KFactor 
 +macro wt_percent_K_MAC(result) { prm = ( ( Get(scale) * ( 1.660538921 * (Get(cell_mass)/Get(cell_volume)) ) (Get(cell_volume))^2MAC_Sample ​/ KFactor ;: result } 
 + 
 +'Dummy phases are used for energy dependent oxide MAC calculation 
 +macro d_str { dummy_str space_group P1 scale 0 a 1 b 1 c 1 site } 
 +d_str Si occ Si+4 = 1; site O  occ O-2  = 2; prm MAC_SiO2 ​   = Get(phase_MAC); :  35.81264 
 +d_str Al occ Al+3 = 2; site O  occ O-2  = 3; prm MAC_Al2O3 ​  = Get(phase_MAC); :  31.59020 
 +d_str Fe occ Fe+3 = 2; site O  occ O-2  = 3; prm MAC_Fe2O3 ​  = Get(phase_MAC);​ :  214.26272 
 +d_str Ca occ Ca+2 = 1; site O  occ O-2  = 1; prm MAC_CaO ​    = Get(phase_MAC);​ :  124.46608 
 +d_str Mg occ Mg+2 = 1; site O  occ O-2  = 1; prm MAC_MgO ​    = Get(phase_MAC); :  28.61699 
 +d_str S  occ S    = 1; site O  occ O-2  = 3; prm MAC_SO3 ​    = Get(phase_MAC);​ :  44.15801 
 +d_str K  occ K+1  = 2; site O  occ O-2  = 1; prm MAC_K2O ​    = Get(phase_MAC); :  122.06126 
 +d_str Na occ Na+1 = 2; site O  occ O-2  = 1; prm MAC_Na2O ​   = Get(phase_MAC);​ :  24.93736 
 +d_str Ti occ Ti+4 = 1; site O  occ O-2  = 2; prm MAC_TiO2 ​   = Get(phase_MAC);​ :  124.23941 
 +d_str Sr occ Sr+2 = 1; site O  occ O-2  = 1; prm MAC_SrO ​    Get(phase_MAC); :  97.04589 
 +d_str P  occ P    = 2; site O  occ O-2  = 5; prm MAC_P2O5 ​   = Get(phase_MAC); :  39.33911 
 +d_str Mn occ Mn+3 = 2; site O  occ O-2  = 3; prm MAC_Mn2O3 ​  = Get(phase_MAC);​ :  191.01235 
 +d_str Cr occ Cr+3 = 2; site O  occ O-2  = 3; prm MAC_Cr2O3 ​  = Get(phase_MAC);​ :  172.14416 
 +d_str C  occ C    = 1; site B  occ O-2  = 2; prm MAC_LOI_CO2 = Get(phase_MAC);​ :  9.57292 
 +d_str H  occ H    = 2; site O  occ O-2  = 1; prm MAC_LOI_H2O = Get(phase_MAC); :  10.23680 
 +d_str La occ La+3 = 1; site B  occ B    = 6; prm MAC_LaB6 ​   = Get(phase_MAC); :  237.33852 
 +d_str Zr occ Zr+4 = 1; site Si occ Si+4 = 1; site O occ O-2  = 4; prm MAC_ZrSiO4 = Get(phase_MAC); :  ​83.19554 
 + 
 +'​----------------------------------------------------------------------------- 
 +' Part for phase quantification in sample using external standard starts here 
 +'​----------------------------------------------------------------------------- 
 + 
 +xdd "​Sample_Pattern.xy"​ 'XRD Pattern of sample 
 +rebin_with_dx_of ​0.02 
 + 
 +r_wp  0 r_exp  0 r_p  0 gof  0 
 + 
 +bkg @ 0 0 0 0 0 0 
 +Specimen_Displacement(@,​ 0) 
 + 
 +'XRF wt.-% data of sample (change prm_with_error to prm for version 5) 
 +prm_with_error !SiO2     0_0 
 +prm_with_error !Al2O3 ​   0_0 
 +prm_with_error !Fe2O3 ​   0_0 
 +prm_with_error !CaO      0_0 
 +prm_with_error !MgO      0_0 
 +prm_with_error !SO3      0_0 
 +prm_with_error !K2O      0_0 
 +prm_with_error !Na2O     0_0 
 +prm_with_error !TiO2     0_0 
 +prm_with_error !SrO      0_0 
 +prm_with_error !P2O5     0_0 
 +prm_with_error !Mn2O3 ​   0_0 
 +prm_with_error !Cr2O3 ​   0_0 
 +prm_with_error !ZrSiO4 ​  0_0 
 +prm_with_error !LaB6     0_0 
 +prm_with_error !LOI_CO2 ​ 0_0 'Loss on ignition 
 +prm_with_error !LOI_H2O ​ 10_0 'Loss on ignition 
 + 
 +'MAC calculation from XRF data 
 +prm !MAC_Sample =  
 +SiO2*0.01*MAC_SiO2 + Al2O3*0.01*MAC_Al2O3 +  
 +Fe2O3*0.01*MAC_Fe2O3 + CaO*0.01*MAC_CaO +  
 +MgO*0.01*MAC_MgO + SO3*0.01*MAC_SO3 + K2O*0.01*MAC_K2O +  
 +Na2O*0.01*MAC_Na2O + TiO2*0.01*MAC_TiO2 + SrO*0.01*MAC_SrO +  
 +P2O5*0.01*MAC_P2O5 + Mn2O3*0.01*MAC_Mn2O3 + Cr2O3*0.01*MAC_Cr2O3 +  
 +ZrSiO4*0.01*MAC_ZrSiO4 + LaB6*0.01*MAC_LaB6 + LOI_CO2*0.01*MAC_LOI_CO2 +  
 +LOI_H2O*0.01*MAC_LOI_H2O;:​ 0 
 + 
 + ​ str 
 + ​ phase_name "Phase in sample"​ 
 +  a 
 +  b 
 + ​ c ​  
 + ​ al 
 + ​ be 
 + ​ ga 
 + ​ volume 
 + ​ space_group 
 +  site 
 + ​ ... 
 + ​ ... 
 + ​ ... 
 + ​ weight_percent 
 + ​ CS_L 
 + ​ Strain_L 
 + ​ scale 
 + ​ wt_percent_K_MAC( ​0) 'This macro reports phase amounts using the K-factor method 
 + 
 +   
 +for xdds { '​Instrument description for both XDD'​s 
 + lam ymin_on_ymax ​0.0001 
 + Lam_recs 
 +0.0159  ​1.534753 ​ 3.6854 
 +   0.5691  ​1.540596 ​ 0.4370 
 +   0.0762 ​ 1.541058 ​ 0.6000 
 +   0.2517 ​ 1.544410 ​ 0.5200 
 +   0.0871 ​ 1.544721 ​ 0.6200 } 
 + LP_Factor(0) 
 + Rp 240 
 + Rs 240 
 + Slit_Width(0.07) 
 + Divergence (0.25) 
 + axial_conv 
 +   filament_length 12 
 +   sample_length 10 
 +   receiving_slit_length 15 
 +   primary_soller_angle 2.55 
 +   secondary_soller_angle 2.55 }
 </​code>​ </​code>​

Personal Tools