# Differences

This shows you the differences between two versions of the page.

 refine_weight_percentage [2015/10/29 06:24]rowlesmr3 refine_weight_percentage [2015/10/29 06:25]rowlesmr3 Both sides previous revision Previous revision 2015/10/29 06:30 rowlesmr3 2015/10/29 06:25 rowlesmr3 2015/10/29 06:24 rowlesmr3 2015/10/29 06:22 rowlesmr3 2015/10/29 06:11 rowlesmr3 created 2015/10/29 06:30 rowlesmr3 2015/10/29 06:25 rowlesmr3 2015/10/29 06:24 rowlesmr3 2015/10/29 06:22 rowlesmr3 2015/10/29 06:11 rowlesmr3 created Last revision Both sides next revision Line 3: Line 3: Macro to aid in the setting or refining of weight percentages. The scale factors are calculated from the given weight fractions. Weight fractions can be either fixed or refined. Macro to aid in the setting or refining of weight percentages. The scale factors are calculated from the given weight fractions. Weight fractions can be either fixed or refined. - The macro can handle up to 10 phases. The equations were calculated in Maple from the standard Hill/Howard quantification algorithm. + The macro can handle up to 8 phases. The equations were calculated in Maple from the standard Hill/Howard quantification algorithm. Contributors:​ Matthew Rowles, with [[refining_setting_weight_percents_directly|help from Alan]] Contributors:​ Matthew Rowles, with [[refining_setting_weight_percents_directly|help from Alan]] Line 16: Line 16: xdd xdd prm s1 0.0035 prm s1 0.0035 - prm w1 = 100 - w2 - w3 - w4; + prm w1 = 100 - w2 - w3 - w4; : 0 ''​this will just report the value prm !w2 20 prm !w2 20 prm w3 30 prm w3 30 Line 38: Line 38: prm x##n = w##n / (m##n (100 - w##n)); prm x##n = w##n / (m##n (100 - w##n)); - '​define scale prms {{{ - #m_if p == 2; 'there are 2 phases in total + #m_if p == 2; ''there are 2 phases in total ​ #​m_if n == 1; ​ #​m_if n == 1; - ​ '​do nothing, as s1 should already be defined elsewhere + ''do nothing, as s1 should already be defined elsewhere ​ #​m_elseif n == 2; ​ #​m_elseif n == 2; prm s##n = x2*s1*m1; prm s##n = x2*s1*m1; ​ #​m_endif ​ #​m_endif - #​m_elseif p == 3; 'there are three phases in total + #​m_elseif p == 3; ''there are three phases in total ​ #​m_if n == 1; ​ #​m_if n == 1; prm m_denom = (m2*m3*x2*x3-1);​ prm m_denom = (m2*m3*x2*x3-1);​ Line 130: Line 129: prm s##n = -m1*s1*x8*(m2*m3*m4*m5*m6*m7*x2*x3*x4*x5*x6*x7+m2*m3*m4*m5*m6*x2*x3*x4*x5*x6+m2*m3*m4*m5*m7*x2*x3*x4*x5*x7+m2*m3*m4*m6*m7*x2*x3*x4*x6*x7+m2*m3*m5*m6*m7*x2*x3*x5*x6*x7+m2*m4*m5*m6*m7*x2*x4*x5*x6*x7+m3*m4*m5*m6*m7*x3*x4*x5*x6*x7+m2*m3*m4*m5*x2*x3*x4*x5+m2*m3*m4*m6*x2*x3*x4*x6+m2*m3*m4*m7*x2*x3*x4*x7+m2*m3*m5*m6*x2*x3*x5*x6+m2*m3*m5*m7*x2*x3*x5*x7+m2*m3*m6*m7*x2*x3*x6*x7+m2*m4*m5*m6*x2*x4*x5*x6+m2*m4*m5*m7*x2*x4*x5*x7+m2*m4*m6*m7*x2*x4*x6*x7+m2*m5*m6*m7*x2*x5*x6*x7+m3*m4*m5*m6*x3*x4*x5*x6+m3*m4*m5*m7*x3*x4*x5*x7+m3*m4*m6*m7*x3*x4*x6*x7+m3*m5*m6*m7*x3*x5*x6*x7+m4*m5*m6*m7*x4*x5*x6*x7+m2*m3*m4*x2*x3*x4+m2*m3*m5*x2*x3*x5+m2*m3*m6*x2*x3*x6+m2*m3*m7*x2*x3*x7+m2*m4*m5*x2*x4*x5+m2*m4*m6*x2*x4*x6+m2*m4*m7*x2*x4*x7+m2*m5*m6*x2*x5*x6+m2*m5*m7*x2*x5*x7+m2*m6*m7*x2*x6*x7+m3*m4*m5*x3*x4*x5+m3*m4*m6*x3*x4*x6+m3*m4*m7*x3*x4*x7+m3*m5*m6*x3*x5*x6+m3*m5*m7*x3*x5*x7+m3*m6*m7*x3*x6*x7+m4*m5*m6*x4*x5*x6+m4*m5*m7*x4*x5*x7+m4*m6*m7*x4*x6*x7+m5*m6*m7*x5*x6*x7+m2*m3*x2*x3+m2*m4*x2*x4+m2*m5*x2*x5+m2*m6*x2*x6+m2*m7*x2*x7+m3*m4*x3*x4+m3*m5*x3*x5+m3*m6*x3*x6+m3*m7*x3*x7+m4*m5*x4*x5+m4*m6*x4*x6+m4*m7*x4*x7+m5*m6*x5*x6+m5*m7*x5*x7+m6*m7*x6*x7+m2*x2+m3*x3+m4*x4+m5*x5+m6*x6+m7*x7+1)/​m_denom;​ prm s##n = -m1*s1*x8*(m2*m3*m4*m5*m6*m7*x2*x3*x4*x5*x6*x7+m2*m3*m4*m5*m6*x2*x3*x4*x5*x6+m2*m3*m4*m5*m7*x2*x3*x4*x5*x7+m2*m3*m4*m6*m7*x2*x3*x4*x6*x7+m2*m3*m5*m6*m7*x2*x3*x5*x6*x7+m2*m4*m5*m6*m7*x2*x4*x5*x6*x7+m3*m4*m5*m6*m7*x3*x4*x5*x6*x7+m2*m3*m4*m5*x2*x3*x4*x5+m2*m3*m4*m6*x2*x3*x4*x6+m2*m3*m4*m7*x2*x3*x4*x7+m2*m3*m5*m6*x2*x3*x5*x6+m2*m3*m5*m7*x2*x3*x5*x7+m2*m3*m6*m7*x2*x3*x6*x7+m2*m4*m5*m6*x2*x4*x5*x6+m2*m4*m5*m7*x2*x4*x5*x7+m2*m4*m6*m7*x2*x4*x6*x7+m2*m5*m6*m7*x2*x5*x6*x7+m3*m4*m5*m6*x3*x4*x5*x6+m3*m4*m5*m7*x3*x4*x5*x7+m3*m4*m6*m7*x3*x4*x6*x7+m3*m5*m6*m7*x3*x5*x6*x7+m4*m5*m6*m7*x4*x5*x6*x7+m2*m3*m4*x2*x3*x4+m2*m3*m5*x2*x3*x5+m2*m3*m6*x2*x3*x6+m2*m3*m7*x2*x3*x7+m2*m4*m5*x2*x4*x5+m2*m4*m6*x2*x4*x6+m2*m4*m7*x2*x4*x7+m2*m5*m6*x2*x5*x6+m2*m5*m7*x2*x5*x7+m2*m6*m7*x2*x6*x7+m3*m4*m5*x3*x4*x5+m3*m4*m6*x3*x4*x6+m3*m4*m7*x3*x4*x7+m3*m5*m6*x3*x5*x6+m3*m5*m7*x3*x5*x7+m3*m6*m7*x3*x6*x7+m4*m5*m6*x4*x5*x6+m4*m5*m7*x4*x5*x7+m4*m6*m7*x4*x6*x7+m5*m6*m7*x5*x6*x7+m2*m3*x2*x3+m2*m4*x2*x4+m2*m5*x2*x5+m2*m6*x2*x6+m2*m7*x2*x7+m3*m4*x3*x4+m3*m5*x3*x5+m3*m6*x3*x6+m3*m7*x3*x7+m4*m5*x4*x5+m4*m6*x4*x6+m4*m7*x4*x7+m5*m6*x5*x6+m5*m7*x5*x7+m6*m7*x6*x7+m2*x2+m3*x3+m4*x4+m5*x5+m6*x6+m7*x7+1)/​m_denom;​ ​ #​m_endif ​ #​m_endif + + #​m_elseif p == 9; + ​ #​m_if n == 1; + prm m_denom = (-1+2*m2*m3*m4*x2*x3*x4+x4*m2*x2*m4+m2*m3*x2*x3+m3*m4*x3*x4+4*m2*m3*m4*m5*m6*x2*x3*x4*x5*x6+m4*m6*x4*x6+x7*m2*x2*m7+m3*m7*x3*x7+m4*m7*x4*x7+m5*m7*x5*x7+x6*m6*m7*x7+x8*m2*x2*m8+m3*m8*x3*x8+m4*m8*x4*x8+m5*m8*x5*x8+x6*m6*m8*x8+x7*m8*m7*x8+x6*m2*x2*m6+m3*m6*x3*x6+m2*m5*x2*x5+m3*m5*x3*x5+m4*m5*x4*x5+m5*m6*x5*x6+x9*m2*x2*m9+m3*m9*x3*x9+m4*m9*x4*x9+m5*m9*x5*x9+x6*m6*m9*x9+x7*m9*m7*x9+x8*m9*m8*x9+3*m2*m3*m4*m6*x2*x3*x4*x6+3*m2*m3*m4*m7*x2*x3*x4*x7+3*m3*m4*m5*m7*x3*x4*x5*x7+3*m2*m4*m5*m7*x2*x4*x5*x7+3*m2*m3*m5*m7*x2*x3*x5*x7+3*x6*m4*m5*m6*m7*x4*x5*x7+3*x6*m3*m4*m6*m7*x3*x4*x7+3*x6*m2*m5*m6*m7*x2*x5*x7+3*x6*m3*m5*m6*m7*x3*x5*x7+3*x6*m2*m4*m6*m7*x2*x4*x7+3*x6*m2*m3*m6*m7*x2*x3*x7+3*x6*m2*m3*m6*m8*x2*x3*x8+3*m2*m3*m4*m8*x2*x3*x4*x8+3*m3*m4*m5*m8*x3*x4*x5*x8+3*m2*m4*m5*m8*x2*x4*x5*x8+3*m2*m3*m5*m8*x2*x3*x5*x8+3*x6*m4*m5*m6*m8*x4*x5*x8+3*x6*m3*m4*m6*m8*x3*x4*x8+3*x6*m2*m5*m6*m8*x2*x5*x8+3*x6*m3*m5*m6*m8*x3*x5*x8+3*x6*m2*m4*m6*m8*x2*x4*x8+3*x7*m4*m5*m8*x4*x5*m7*x8+3*x7*m3*m4*m8*x3*x4*m7*x8+3*x7*m2*m5*m8*x2*x5*m7*x8+3*x7*m3*m5*m8*x3*x5*m7*x8+3*x7*m2*m4*m8*x2*x4*m7*x8+3*x7*x6*m2*m6*m8*x2*m7*x8+3*x7*x6*m3*m6*m8*x3*m7*x8+3*x7*x6*m4*m6*m8*x4*m7*x8+3*x7*x6*m5*m6*m8*x5*m7*x8+3*x7*m2*m3*m8*x2*x3*m7*x8+7*x8*x7*x6*m2*m3*m4*m5*m6*m9*x2*x3*x4*x5*m7*m8*x9+6*x7*x6*m2*m3*m4*m5*m6*m8*x2*x3*x4*x5*m7*x8+5*x8*x7*x6*m3*m5*m6*m9*x3*x5*m7*m8*x9+5*x8*x7*x6*m2*m4*m6*m9*x2*x4*m7*m8*x9+5*x8*x7*x6*m2*m3*m6*m9*x2*x3*m7*m8*x9+5*x8*x7*m2*m3*m4*m9*x2*x3*x4*m7*m8*x9+5*x8*x7*m3*m4*m5*m9*x3*x4*x5*m7*m8*x9+5*x6*m2*m3*m4*m5*m6*m9*x2*x3*x4*x5*x9+5*x7*x6*m2*m3*m4*m6*m9*x2*x3*x4*m7*x9+5*x7*x6*m3*m4*m5*m6*m9*x3*x4*x5*m7*x9+5*x7*m2*m3*m4*m5*m9*x2*x3*x4*x5*m7*x9+5*x7*x6*m2*m4*m5*m6*m9*x2*x4*x5*m7*x9+5*x7*x6*m2*m3*m5*m6*m9*x2*x3*x5*m7*x9+5*x8*x7*m2*m4*m5*m9*x2*x4*x5*m7*m8*x9+5*x8*x7*m2*m3*m5*m9*x2*x3*x5*m7*m8*x9+5*x8*x7*x6*m4*m5*m6*m9*x4*x5*m7*m8*x9+5*x8*x6*m2*m3*m4*m6*m9*x2*x3*x4*m8*x9+5*x8*x6*m3*m4*m5*m6*m9*x3*x4*x5*m8*x9+5*x8*m2*m3*m4*m5*m9*x2*x3*x4*x5*m8*x9+5*x8*x6*m2*m4*m5*m6*m9*x2*x4*x5*m8*x9+5*x8*x6*m2*m3*m5*m6*m9*x2*x3*x5*m8*x9+5*x8*x7*x6*m3*m4*m6*m9*x3*x4*m7*m8*x9+5*x8*x7*x6*m2*m5*m6*m9*x2*x5*m7*m8*x9+4*x8*x7*m2*m4*m9*x2*x4*m7*m8*x9+4*x8*x7*x6*m2*m6*m9*x2*m7*m8*x9+4*x8*x7*x6*m3*m6*m9*x3*m7*m8*x9+4*x8*x7*x6*m4*m6*m9*x4*m7*m8*x9+4*x8*x7*x6*m5*m6*m9*x5*m7*m8*x9+4*x8*x7*m2*m3*m9*x2*x3*m7*m8*x9+4*x8*x6*m2*m3*m6*m9*x2*x3*m8*x9+4*x8*m2*m3*m4*m9*x2*x3*x4*m8*x9+4*x8*m3*m4*m5*m9*x3*x4*x5*m8*x9+4*x8*m2*m4*m5*m9*x2*x4*x5*m8*x9+4*x7*m2*m3*m4*m9*x2*x3*x4*m7*x9+4*x7*m3*m4*m5*m9*x3*x4*x5*m7*x9+4*x7*m2*m4*m5*m9*x2*x4*x5*m7*x9+4*x7*m2*m3*m5*m9*x2*x3*x5*m7*x9+4*x7*x6*m4*m5*m6*m9*x4*x5*m7*x9+4*x6*m2*m3*m4*m6*m9*x2*x3*x4*x9+4*x6*m3*m4*m5*m6*m9*x3*x4*x5*x9+4*x8*m2*m3*m5*m9*x2*x3*x5*m8*x9+4*x8*x6*m4*m5*m6*m9*x4*x5*m8*x9+4*x8*x6*m3*m4*m6*m9*x3*x4*m8*x9+4*x8*x6*m2*m5*m6*m9*x2*x5*m8*x9+4*x8*x6*m3*m5*m6*m9*x3*x5*m8*x9+4*x8*x6*m2*m4*m6*m9*x2*x4*m8*x9+4*x8*x7*m4*m5*m9*x4*x5*m7*m8*x9+4*x8*x7*m3*m4*m9*x3*x4*m7*m8*x9+4*m2*m3*m4*m5*m9*x2*x3*x4*x5*x9+4*x6*m2*m4*m5*m6*m9*x2*x4*x5*x9+4*x6*m2*m3*m5*m6*m9*x2*x3*x5*x9+4*x7*x6*m3*m4*m6*m9*x3*x4*m7*x9+4*x7*x6*m2*m5*m6*m9*x2*x5*m7*x9+4*x7*x6*m3*m5*m6*m9*x3*x5*m7*x9+4*x7*x6*m2*m4*m6*m9*x2*x4*m7*x9+4*x7*x6*m2*m3*m6*m9*x2*x3*m7*x9+4*x8*x7*m2*m5*m9*x2*x5*m7*m8*x9+4*x8*x7*m3*m5*m9*x3*x5*m7*m8*x9+5*x6*m2*m3*m4*m5*m6*m8*x2*x3*x4*x5*x8+5*x7*x6*m2*m3*m4*m6*m8*x2*x3*x4*m7*x8+5*x7*x6*m3*m4*m5*m6*m8*x3*x4*x5*m7*x8+5*x7*m2*m3*m4*m5*m8*x2*x3*x4*x5*m7*x8+5*x7*x6*m2*m4*m5*m6*m8*x2*x4*x5*m7*x8+5*x7*x6*m2*m3*m5*m6*m8*x2*x3*x5*m7*x8+5*x6*m2*m3*m4*m5*m6*m7*x2*x3*x4*x5*x7+3*x6*m4*m5*m6*m9*x4*x5*x9+3*x6*m3*m4*m6*m9*x3*x4*x9+3*x6*m2*m5*m6*m9*x2*x5*x9+3*x6*m3*m5*m6*m9*x3*x5*x9+3*x6*m2*m4*m6*m9*x2*x4*x9+3*x7*m4*m5*m9*x4*x5*m7*x9+3*x7*m3*m4*m9*x3*x4*m7*x9+3*x7*m2*m5*m9*x2*x5*m7*x9+3*x7*m3*m5*m9*x3*x5*m7*x9+3*x7*m2*m4*m9*x2*x4*m7*x9+3*x8*x7*m5*m9*x5*m7*m8*x9+3*x8*x7*x6*m6*m9*m7*m8*x9+3*x8*x7*m2*x2*m9*m7*m8*x9+3*x8*x7*m3*m9*x3*m7*m8*x9+3*x8*m2*m3*m9*x2*x3*m8*x9+3*x8*m3*m4*m9*x3*x4*m8*x9+3*x8*m2*m5*m9*x2*x5*m8*x9+3*x8*m3*m5*m9*x3*x5*m8*x9+3*x8*m2*m4*m9*x2*x4*m8*x9+3*x8*x6*m2*m6*m9*x2*m8*x9+3*x8*x6*m3*m6*m9*x3*m8*x9+3*x8*x6*m4*m6*m9*x4*m8*x9+3*x8*x6*m5*m6*m9*x5*m8*x9+3*x8*m4*m5*m9*x4*x5*m8*x9+3*x8*x7*m4*m9*x4*m7*m8*x9+3*x7*x6*m2*m6*m9*x2*m7*x9+3*x7*x6*m3*m6*m9*x3*m7*x9+3*x7*x6*m4*m6*m9*x4*m7*x9+3*x7*x6*m5*m6*m9*x5*m7*x9+3*x7*m2*m3*m9*x2*x3*m7*x9+3*x6*m2*m3*m6*m9*x2*x3*x9+3*m2*m3*m4*m9*x2*x3*x4*x9+3*m3*m4*m5*m9*x3*x4*x5*x9+3*m2*m4*m5*m9*x2*x4*x5*x9+3*m2*m3*m5*m9*x2*x3*x5*x9+3*m2*m3*m4*m5*x2*x3*x4*x5+3*m2*m3*m5*m6*x2*x3*x5*x6+3*m2*m4*m5*m6*x2*x4*x5*x6+3*m3*m4*m5*m6*x3*x4*x5*x6+4*x7*x6*m2*m3*m6*m8*x2*x3*m7*x8+4*x7*m2*m3*m4*m8*x2*x3*x4*m7*x8+4*x7*m3*m4*m5*m8*x3*x4*x5*m7*x8+4*x7*m2*m4*m5*m8*x2*x4*x5*m7*x8+4*x7*m2*m3*m5*m8*x2*x3*x5*m7*x8+4*x7*x6*m4*m5*m6*m8*x4*x5*m7*x8+4*x6*m3*m4*m5*m6*m8*x3*x4*x5*x8+4*m2*m3*m4*m5*m8*x2*x3*x4*x5*x8+4*x6*m2*m4*m5*m6*m8*x2*x4*x5*x8+4*x6*m2*m3*m5*m6*m8*x2*x3*x5*x8+4*x6*m2*m3*m4*m6*m8*x2*x3*x4*x8+4*x7*x6*m3*m4*m6*m8*x3*x4*m7*x8+4*x7*x6*m2*m5*m6*m8*x2*x5*m7*x8+4*x7*x6*m3*m5*m6*m8*x3*x5*m7*x8+4*x7*x6*m2*m4*m6*m8*x2*x4*m7*x8+4*x6*m2*m4*m5*m6*m7*x2*x4*x5*x7+4*m2*m3*m4*m5*m7*x2*x3*x4*x5*x7+4*x6*m2*m3*m5*m6*m7*x2*x3*x5*x7+4*x6*m2*m3*m4*m6*m7*x2*x3*x4*x7+4*x6*m3*m4*m5*m6*m7*x3*x4*x5*x7+2*m2*m4*m6*x2*x4*x6+2*m3*m4*m6*x3*x4*x6+2*x7*m2*x2*m9*m7*x9+2*x7*m3*m9*x3*m7*x9+2*x8*x6*m6*m9*m8*x9+2*x8*x7*m9*m7*m8*x9+2*x8*m2*x2*m9*m8*x9+2*x8*m3*m9*x3*m8*x9+2*x8*m4*m9*x4*m8*x9+2*x8*m5*m9*x5*m8*x9+2*m3*m4*m9*x3*x4*x9+2*m2*m5*m9*x2*x5*x9+2*m3*m5*m9*x3*x5*x9+2*m2*m4*m9*x2*x4*x9+2*x6*m2*m6*m9*x2*x9+2*x6*m3*m6*m9*x3*x9+2*x6*m4*m6*m9*x4*x9+2*x6*m5*m6*m9*x5*x9+2*m4*m5*m9*x4*x5*x9+2*x7*m4*m9*x4*m7*x9+2*x7*m5*m9*x5*m7*x9+2*x7*x6*m6*m9*m7*x9+2*m2*m3*m9*x2*x3*x9+2*m2*m3*m5*x2*x3*x5+2*m2*m4*m5*x2*x4*x5+2*m2*m5*m6*x2*x5*x6+2*m3*m4*m5*x3*x4*x5+2*m3*m5*m6*x3*x5*x6+2*m4*m5*m6*x4*x5*x6+2*m2*m3*m6*x2*x3*x6+6*x7*x6*m2*m3*m4*m5*m6*m9*x2*x3*x4*x5*m7*x9+6*x8*x6*m2*m3*m4*m5*m6*m9*x2*x3*x4*x5*m8*x9+6*x8*x7*x6*m2*m3*m4*m6*m9*x2*x3*x4*m7*m8*x9+6*x8*x7*x6*m3*m4*m5*m6*m9*x3*x4*x5*m7*m8*x9+6*x8*x7*m2*m3*m4*m5*m9*x2*x3*x4*x5*m7*m8*x9+6*x8*x7*x6*m2*m4*m5*m6*m9*x2*x4*x5*m7*m8*x9+6*x8*x7*x6*m2*m3*m5*m6*m9*x2*x3*x5*m7*m8*x9+2*m3*m4*m8*x3*x4*x8+2*m2*m5*m8*x2*x5*x8+2*m3*m5*m8*x3*x5*x8+2*m2*m4*m8*x2*x4*x8+2*x6*m2*m6*m8*x2*x8+2*x6*m3*m6*m8*x3*x8+2*x6*m4*m6*m8*x4*x8+2*x6*m5*m6*m8*x5*x8+2*m4*m5*m8*x4*x5*x8+2*x7*m4*m8*x4*m7*x8+2*x7*m5*m8*x5*m7*x8+2*x7*x6*m6*m8*m7*x8+2*x7*m2*x2*m8*m7*x8+2*x7*m3*m8*x3*m7*x8+2*m2*m3*m8*x2*x3*x8+2*m4*m5*m7*x4*x5*x7+2*m3*m4*m7*x3*x4*x7+2*m2*m5*m7*x2*x5*x7+2*m3*m5*m7*x3*x5*x7+2*m2*m4*m7*x2*x4*x7+2*x6*m2*m6*m7*x2*x7+2*x6*m3*m6*m7*x3*x7+2*x6*m4*m6*m7*x4*x7+2*x6*m5*m6*m7*x5*x7+2*m2*m3*m7*x2*x3*x7);​ + ​ #​m_elseif n == 2; + prm s##n = -x2*s1*m1*(m3*m4*m5*m6*m7*m8*m9*x3*x4*x5*x6*x7*x8*x9+m3*m4*m5*m6*m7*m8*x3*x4*x5*x6*x7*x8+m3*m4*m5*m6*m7*m9*x3*x4*x5*x6*x7*x9+m3*m4*m5*m6*m8*m9*x3*x4*x5*x6*x8*x9+m3*m4*m5*m7*m8*m9*x3*x4*x5*x7*x8*x9+m3*m4*m6*m7*m8*m9*x3*x4*x6*x7*x8*x9+m3*m5*m6*m7*m8*m9*x3*x5*x6*x7*x8*x9+m4*m5*m6*m7*m8*m9*x4*x5*x6*x7*x8*x9+m3*m4*m5*m6*m7*x3*x4*x5*x6*x7+m3*m4*m5*m6*m8*x3*x4*x5*x6*x8+m3*m4*m5*m6*m9*x3*x4*x5*x6*x9+m3*m4*m5*m7*m8*x3*x4*x5*x7*x8+m3*m4*m5*m7*m9*x3*x4*x5*x7*x9+m3*m4*m5*m8*m9*x3*x4*x5*x8*x9+m3*m4*m6*m7*m8*x3*x4*x6*x7*x8+m3*m4*m6*m7*m9*x3*x4*x6*x7*x9+m3*m4*m6*m8*m9*x3*x4*x6*x8*x9+m3*m4*m7*m8*m9*x3*x4*x7*x8*x9+m3*m5*m6*m7*m8*x3*x5*x6*x7*x8+m3*m5*m6*m7*m9*x3*x5*x6*x7*x9+m3*m5*m6*m8*m9*x3*x5*x6*x8*x9+m3*m5*m7*m8*m9*x3*x5*x7*x8*x9+m3*m6*m7*m8*m9*x3*x6*x7*x8*x9+m4*m5*m6*m7*m8*x4*x5*x6*x7*x8+m4*m5*m6*m7*m9*x4*x5*x6*x7*x9+m4*m5*m6*m8*m9*x4*x5*x6*x8*x9+m4*m5*m7*m8*m9*x4*x5*x7*x8*x9+m4*m6*m7*m8*m9*x4*x6*x7*x8*x9+m5*m6*m7*m8*m9*x5*x6*x7*x8*x9+m3*m4*m5*m6*x3*x4*x5*x6+m3*m4*m5*m7*x3*x4*x5*x7+m3*m4*m5*m8*x3*x4*x5*x8+m3*m4*m5*m9*x3*x4*x5*x9+m3*m4*m6*m7*x3*x4*x6*x7+m3*m4*m6*m8*x3*x4*x6*x8+m3*m4*m6*m9*x3*x4*x6*x9+m3*m4*m7*m8*x3*x4*x7*x8+m3*m4*m7*m9*x3*x4*x7*x9+m3*m4*m8*m9*x3*x4*x8*x9+m3*m5*m6*m7*x3*x5*x6*x7+m3*m5*m6*m8*x3*x5*x6*x8+m3*m5*m6*m9*x3*x5*x6*x9+m3*m5*m7*m8*x3*x5*x7*x8+m3*m5*m7*m9*x3*x5*x7*x9+m3*m5*m8*m9*x3*x5*x8*x9+m3*m6*m7*m8*x3*x6*x7*x8+m3*m6*m7*m9*x3*x6*x7*x9+m3*m6*m8*m9*x3*x6*x8*x9+m3*m7*m8*m9*x3*x7*x8*x9+m4*m5*m6*m7*x4*x5*x6*x7+m4*m5*m6*m8*x4*x5*x6*x8+m4*m5*m6*m9*x4*x5*x6*x9+m4*m5*m7*m8*x4*x5*x7*x8+m4*m5*m7*m9*x4*x5*x7*x9+m4*m5*m8*m9*x4*x5*x8*x9+m4*m6*m7*m8*x4*x6*x7*x8+m4*m6*m7*m9*x4*x6*x7*x9+m4*m6*m8*m9*x4*x6*x8*x9+m4*m7*m8*m9*x4*x7*x8*x9+m5*m6*m7*m8*x5*x6*x7*x8+m5*m6*m7*m9*x5*x6*x7*x9+m5*m6*m8*m9*x5*x6*x8*x9+m5*m7*m8*m9*x5*x7*x8*x9+m6*m7*m8*m9*x6*x7*x8*x9+m3*m4*m5*x3*x4*x5+m3*m4*m6*x3*x4*x6+m3*m4*m7*x3*x4*x7+m3*m4*m8*x3*x4*x8+m3*m4*m9*x3*x4*x9+m3*m5*m6*x3*x5*x6+m3*m5*m7*x3*x5*x7+m3*m5*m8*x3*x5*x8+m3*m5*m9*x3*x5*x9+m3*m6*m7*x3*x6*x7+m3*m6*m8*x3*x6*x8+m3*m6*m9*x3*x6*x9+m3*m7*m8*x3*x7*x8+m3*m7*m9*x3*x7*x9+m3*m8*m9*x3*x8*x9+m4*m5*m6*x4*x5*x6+m4*m5*m7*x4*x5*x7+m4*m5*m8*x4*x5*x8+m4*m5*m9*x4*x5*x9+m4*m6*m7*x4*x6*x7+m4*m6*m8*x4*x6*x8+m4*m6*m9*x4*x6*x9+m4*m7*m8*x4*x7*x8+m4*m7*m9*x4*x7*x9+m4*m8*m9*x4*x8*x9+m5*m6*m7*x5*x6*x7+m5*m6*m8*x5*x6*x8+m5*m6*m9*x5*x6*x9+m5*m7*m8*x5*x7*x8+m5*m7*m9*x5*x7*x9+m5*m8*m9*x5*x8*x9+m6*m7*m8*x6*x7*x8+m6*m7*m9*x6*x7*x9+m6*m8*m9*x6*x8*x9+m7*m8*m9*x7*x8*x9+m3*m4*x3*x4+m3*m5*x3*x5+m3*m6*x3*x6+m3*m7*x3*x7+m3*m8*x3*x8+m3*m9*x3*x9+m4*m5*x4*x5+m4*m6*x4*x6+m4*m7*x4*x7+m4*m8*x4*x8+m4*m9*x4*x9+m5*m6*x5*x6+m5*m7*x5*x7+m5*m8*x5*x8+m5*m9*x5*x9+m6*m7*x6*x7+m6*m8*x6*x8+m6*m9*x6*x9+m7*m8*x7*x8+m7*m9*x7*x9+m8*m9*x8*x9+m3*x3+m4*x4+m5*x5+m6*x6+m7*x7+m8*x8+m9*x9+1)/​m_denom;​ + ​ #​m_elseif n == 3; + prm s##n = -(m2*m4*m5*m6*m7*m8*m9*x2*x4*x5*x6*x7*x8*x9+m2*m4*m5*m6*m7*m8*x2*x4*x5*x6*x7*x8+m2*m4*m5*m6*m7*m9*x2*x4*x5*x6*x7*x9+m2*m4*m5*m6*m8*m9*x2*x4*x5*x6*x8*x9+m2*m4*m5*m7*m8*m9*x2*x4*x5*x7*x8*x9+m2*m4*m6*m7*m8*m9*x2*x4*x6*x7*x8*x9+m2*m5*m6*m7*m8*m9*x2*x5*x6*x7*x8*x9+m4*m5*m6*m7*m8*m9*x4*x5*x6*x7*x8*x9+m2*m4*m5*m6*m7*x2*x4*x5*x6*x7+m2*m4*m5*m6*m8*x2*x4*x5*x6*x8+m2*m4*m5*m6*m9*x2*x4*x5*x6*x9+m2*m4*m5*m7*m8*x2*x4*x5*x7*x8+m2*m4*m5*m7*m9*x2*x4*x5*x7*x9+m2*m4*m5*m8*m9*x2*x4*x5*x8*x9+m2*m4*m6*m7*m8*x2*x4*x6*x7*x8+m2*m4*m6*m7*m9*x2*x4*x6*x7*x9+m2*m4*m6*m8*m9*x2*x4*x6*x8*x9+m2*m4*m7*m8*m9*x2*x4*x7*x8*x9+m2*m5*m6*m7*m8*x2*x5*x6*x7*x8+m2*m5*m6*m7*m9*x2*x5*x6*x7*x9+m2*m5*m6*m8*m9*x2*x5*x6*x8*x9+m2*m5*m7*m8*m9*x2*x5*x7*x8*x9+m2*m6*m7*m8*m9*x2*x6*x7*x8*x9+m4*m5*m6*m7*m8*x4*x5*x6*x7*x8+m4*m5*m6*m7*m9*x4*x5*x6*x7*x9+m4*m5*m6*m8*m9*x4*x5*x6*x8*x9+m4*m5*m7*m8*m9*x4*x5*x7*x8*x9+m4*m6*m7*m8*m9*x4*x6*x7*x8*x9+m5*m6*m7*m8*m9*x5*x6*x7*x8*x9+m2*m4*m5*m6*x2*x4*x5*x6+m2*m4*m5*m7*x2*x4*x5*x7+m2*m4*m5*m8*x2*x4*x5*x8+m2*m4*m5*m9*x2*x4*x5*x9+m2*m4*m6*m7*x2*x4*x6*x7+m2*m4*m6*m8*x2*x4*x6*x8+m2*m4*m6*m9*x2*x4*x6*x9+m2*m4*m7*m8*x2*x4*x7*x8+m2*m4*m7*m9*x2*x4*x7*x9+m2*m4*m8*m9*x2*x4*x8*x9+m2*m5*m6*m7*x2*x5*x6*x7+m2*m5*m6*m8*x2*x5*x6*x8+m2*m5*m6*m9*x2*x5*x6*x9+m2*m5*m7*m8*x2*x5*x7*x8+m2*m5*m7*m9*x2*x5*x7*x9+m2*m5*m8*m9*x2*x5*x8*x9+m2*m6*m7*m8*x2*x6*x7*x8+m2*m6*m7*m9*x2*x6*x7*x9+m2*m6*m8*m9*x2*x6*x8*x9+m2*m7*m8*m9*x2*x7*x8*x9+m4*m5*m6*m7*x4*x5*x6*x7+m4*m5*m6*m8*x4*x5*x6*x8+m4*m5*m6*m9*x4*x5*x6*x9+m4*m5*m7*m8*x4*x5*x7*x8+m4*m5*m7*m9*x4*x5*x7*x9+m4*m5*m8*m9*x4*x5*x8*x9+m4*m6*m7*m8*x4*x6*x7*x8+m4*m6*m7*m9*x4*x6*x7*x9+m4*m6*m8*m9*x4*x6*x8*x9+m4*m7*m8*m9*x4*x7*x8*x9+m5*m6*m7*m8*x5*x6*x7*x8+m5*m6*m7*m9*x5*x6*x7*x9+m5*m6*m8*m9*x5*x6*x8*x9+m5*m7*m8*m9*x5*x7*x8*x9+m6*m7*m8*m9*x6*x7*x8*x9+m2*m4*m5*x2*x4*x5+m2*m4*m6*x2*x4*x6+m2*m4*m7*x2*x4*x7+m2*m4*m8*x2*x4*x8+m2*m4*m9*x2*x4*x9+m2*m5*m6*x2*x5*x6+m2*m5*m7*x2*x5*x7+m2*m5*m8*x2*x5*x8+m2*m5*m9*x2*x5*x9+m2*m6*m7*x2*x6*x7+m2*m6*m8*x2*x6*x8+m2*m6*m9*x2*x6*x9+m2*m7*m8*x2*x7*x8+m2*m7*m9*x2*x7*x9+m2*m8*m9*x2*x8*x9+m4*m5*m6*x4*x5*x6+m4*m5*m7*x4*x5*x7+m4*m5*m8*x4*x5*x8+m4*m5*m9*x4*x5*x9+m4*m6*m7*x4*x6*x7+m4*m6*m8*x4*x6*x8+m4*m6*m9*x4*x6*x9+m4*m7*m8*x4*x7*x8+m4*m7*m9*x4*x7*x9+m4*m8*m9*x4*x8*x9+m5*m6*m7*x5*x6*x7+m5*m6*m8*x5*x6*x8+m5*m6*m9*x5*x6*x9+m5*m7*m8*x5*x7*x8+m5*m7*m9*x5*x7*x9+m5*m8*m9*x5*x8*x9+m6*m7*m8*x6*x7*x8+m6*m7*m9*x6*x7*x9+m6*m8*m9*x6*x8*x9+m7*m8*m9*x7*x8*x9+m2*m4*x2*x4+m2*m5*x2*x5+m2*m6*x2*x6+m2*m7*x2*x7+m2*m8*x2*x8+m2*m9*x2*x9+m4*m5*x4*x5+m4*m6*x4*x6+m4*m7*x4*x7+m4*m8*x4*x8+m4*m9*x4*x9+m5*m6*x5*x6+m5*m7*x5*x7+m5*m8*x5*x8+m5*m9*x5*x9+m6*m7*x6*x7+m6*m8*x6*x8+m6*m9*x6*x9+m7*m8*x7*x8+m7*m9*x7*x9+m8*m9*x8*x9+m2*x2+m4*x4+m5*x5+m6*x6+m7*x7+m8*x8+m9*x9+1)*x3*s1*m1/​m_denom;​ + ​ #​m_elseif n == 4; + prm s##n = -(m2*m3*m5*m6*m7*m8*m9*x2*x3*x5*x6*x7*x8*x9+m2*m3*m5*m6*m7*m8*x2*x3*x5*x6*x7*x8+m2*m3*m5*m6*m7*m9*x2*x3*x5*x6*x7*x9+m2*m3*m5*m6*m8*m9*x2*x3*x5*x6*x8*x9+m2*m3*m5*m7*m8*m9*x2*x3*x5*x7*x8*x9+m2*m3*m6*m7*m8*m9*x2*x3*x6*x7*x8*x9+m2*m5*m6*m7*m8*m9*x2*x5*x6*x7*x8*x9+m3*m5*m6*m7*m8*m9*x3*x5*x6*x7*x8*x9+m2*m3*m5*m6*m7*x2*x3*x5*x6*x7+m2*m3*m5*m6*m8*x2*x3*x5*x6*x8+m2*m3*m5*m6*m9*x2*x3*x5*x6*x9+m2*m3*m5*m7*m8*x2*x3*x5*x7*x8+m2*m3*m5*m7*m9*x2*x3*x5*x7*x9+m2*m3*m5*m8*m9*x2*x3*x5*x8*x9+m2*m3*m6*m7*m8*x2*x3*x6*x7*x8+m2*m3*m6*m7*m9*x2*x3*x6*x7*x9+m2*m3*m6*m8*m9*x2*x3*x6*x8*x9+m2*m3*m7*m8*m9*x2*x3*x7*x8*x9+m2*m5*m6*m7*m8*x2*x5*x6*x7*x8+m2*m5*m6*m7*m9*x2*x5*x6*x7*x9+m2*m5*m6*m8*m9*x2*x5*x6*x8*x9+m2*m5*m7*m8*m9*x2*x5*x7*x8*x9+m2*m6*m7*m8*m9*x2*x6*x7*x8*x9+m3*m5*m6*m7*m8*x3*x5*x6*x7*x8+m3*m5*m6*m7*m9*x3*x5*x6*x7*x9+m3*m5*m6*m8*m9*x3*x5*x6*x8*x9+m3*m5*m7*m8*m9*x3*x5*x7*x8*x9+m3*m6*m7*m8*m9*x3*x6*x7*x8*x9+m5*m6*m7*m8*m9*x5*x6*x7*x8*x9+m2*m3*m5*m6*x2*x3*x5*x6+m2*m3*m5*m7*x2*x3*x5*x7+m2*m3*m5*m8*x2*x3*x5*x8+m2*m3*m5*m9*x2*x3*x5*x9+m2*m3*m6*m7*x2*x3*x6*x7+m2*m3*m6*m8*x2*x3*x6*x8+m2*m3*m6*m9*x2*x3*x6*x9+m2*m3*m7*m8*x2*x3*x7*x8+m2*m3*m7*m9*x2*x3*x7*x9+m2*m3*m8*m9*x2*x3*x8*x9+m2*m5*m6*m7*x2*x5*x6*x7+m2*m5*m6*m8*x2*x5*x6*x8+m2*m5*m6*m9*x2*x5*x6*x9+m2*m5*m7*m8*x2*x5*x7*x8+m2*m5*m7*m9*x2*x5*x7*x9+m2*m5*m8*m9*x2*x5*x8*x9+m2*m6*m7*m8*x2*x6*x7*x8+m2*m6*m7*m9*x2*x6*x7*x9+m2*m6*m8*m9*x2*x6*x8*x9+m2*m7*m8*m9*x2*x7*x8*x9+m3*m5*m6*m7*x3*x5*x6*x7+m3*m5*m6*m8*x3*x5*x6*x8+m3*m5*m6*m9*x3*x5*x6*x9+m3*m5*m7*m8*x3*x5*x7*x8+m3*m5*m7*m9*x3*x5*x7*x9+m3*m5*m8*m9*x3*x5*x8*x9+m3*m6*m7*m8*x3*x6*x7*x8+m3*m6*m7*m9*x3*x6*x7*x9+m3*m6*m8*m9*x3*x6*x8*x9+m3*m7*m8*m9*x3*x7*x8*x9+m5*m6*m7*m8*x5*x6*x7*x8+m5*m6*m7*m9*x5*x6*x7*x9+m5*m6*m8*m9*x5*x6*x8*x9+m5*m7*m8*m9*x5*x7*x8*x9+m6*m7*m8*m9*x6*x7*x8*x9+m2*m3*m5*x2*x3*x5+m2*m3*m6*x2*x3*x6+m2*m3*m7*x2*x3*x7+m2*m3*m8*x2*x3*x8+m2*m3*m9*x2*x3*x9+m2*m5*m6*x2*x5*x6+m2*m5*m7*x2*x5*x7+m2*m5*m8*x2*x5*x8+m2*m5*m9*x2*x5*x9+m2*m6*m7*x2*x6*x7+m2*m6*m8*x2*x6*x8+m2*m6*m9*x2*x6*x9+m2*m7*m8*x2*x7*x8+m2*m7*m9*x2*x7*x9+m2*m8*m9*x2*x8*x9+m3*m5*m6*x3*x5*x6+m3*m5*m7*x3*x5*x7+m3*m5*m8*x3*x5*x8+m3*m5*m9*x3*x5*x9+m3*m6*m7*x3*x6*x7+m3*m6*m8*x3*x6*x8+m3*m6*m9*x3*x6*x9+m3*m7*m8*x3*x7*x8+m3*m7*m9*x3*x7*x9+m3*m8*m9*x3*x8*x9+m5*m6*m7*x5*x6*x7+m5*m6*m8*x5*x6*x8+m5*m6*m9*x5*x6*x9+m5*m7*m8*x5*x7*x8+m5*m7*m9*x5*x7*x9+m5*m8*m9*x5*x8*x9+m6*m7*m8*x6*x7*x8+m6*m7*m9*x6*x7*x9+m6*m8*m9*x6*x8*x9+m7*m8*m9*x7*x8*x9+m2*m3*x2*x3+m2*m5*x2*x5+m2*m6*x2*x6+m2*m7*x2*x7+m2*m8*x2*x8+m2*m9*x2*x9+m3*m5*x3*x5+m3*m6*x3*x6+m3*m7*x3*x7+m3*m8*x3*x8+m3*m9*x3*x9+m5*m6*x5*x6+m5*m7*x5*x7+m5*m8*x5*x8+m5*m9*x5*x9+m6*m7*x6*x7+m6*m8*x6*x8+m6*m9*x6*x9+m7*m8*x7*x8+m7*m9*x7*x9+m8*m9*x8*x9+m2*x2+m3*x3+m5*x5+m6*x6+m7*x7+m8*x8+m9*x9+1)*m1*s1*x4/​m_denom;​ + ​ #​m_elseif n == 5; + prm s##n = -(m7*x7+1)*(m9*x9+1)*s1*m1*(m2*m3*m4*x2*x3*x4+m2*m3*x2*x3+m2*m4*x2*x4+m3*m4*x3*x4+m2*x2+m3*x3+m4*x4+1)*(m8*x8+1)*x5*(m6*x6+1)/​m_denom;​ + ​ #​m_elseif n == 6; + prm s##n = -(m8*x8+1)*(m2*m3*m4*m5*x2*x3*x4*x5+m2*m3*m4*x2*x3*x4+m2*m3*m5*x2*x3*x5+m2*m4*m5*x2*x4*x5+m3*m4*m5*x3*x4*x5+m2*m3*x2*x3+m2*m4*x2*x4+m2*m5*x2*x5+m3*m4*x3*x4+m3*m5*x3*x5+m4*m5*x4*x5+m2*x2+m3*x3+m4*x4+m5*x5+1)*m1*s1*(m9*x9+1)*x6*(m7*x7+1)/​m_denom;​ + ​ #​m_elseif n == 7; + prm s##n = -(m9*x9+1)*s1*m1*(m2*m3*m4*m5*m6*x2*x3*x4*x5*x6+m2*m3*m4*m5*x2*x3*x4*x5+m2*m3*m4*m6*x2*x3*x4*x6+m2*m3*m5*m6*x2*x3*x5*x6+m2*m4*m5*m6*x2*x4*x5*x6+m3*m4*m5*m6*x3*x4*x5*x6+m2*m3*m4*x2*x3*x4+m2*m3*m5*x2*x3*x5+m2*m3*m6*x2*x3*x6+m2*m4*m5*x2*x4*x5+m2*m4*m6*x2*x4*x6+m2*m5*m6*x2*x5*x6+m3*m4*m5*x3*x4*x5+m3*m4*m6*x3*x4*x6+m3*m5*m6*x3*x5*x6+m4*m5*m6*x4*x5*x6+m2*m3*x2*x3+m2*m4*x2*x4+m2*m5*x2*x5+m2*m6*x2*x6+m3*m4*x3*x4+m3*m5*x3*x5+m3*m6*x3*x6+m4*m5*x4*x5+m4*m6*x4*x6+m5*m6*x5*x6+m2*x2+m3*x3+m4*x4+m5*x5+m6*x6+1)*x7*(m8*x8+1)/​m_denom;​ + ​ #​m_elseif n == 8; + prm s##n = -(m2*m3*m4*m5*m6*m7*x2*x3*x4*x5*x6*x7+m2*m3*m4*m5*m6*x2*x3*x4*x5*x6+m2*m3*m4*m5*m7*x2*x3*x4*x5*x7+m2*m3*m4*m6*m7*x2*x3*x4*x6*x7+m2*m3*m5*m6*m7*x2*x3*x5*x6*x7+m2*m4*m5*m6*m7*x2*x4*x5*x6*x7+m3*m4*m5*m6*m7*x3*x4*x5*x6*x7+m2*m3*m4*m5*x2*x3*x4*x5+m2*m3*m4*m6*x2*x3*x4*x6+m2*m3*m4*m7*x2*x3*x4*x7+m2*m3*m5*m6*x2*x3*x5*x6+m2*m3*m5*m7*x2*x3*x5*x7+m2*m3*m6*m7*x2*x3*x6*x7+m2*m4*m5*m6*x2*x4*x5*x6+m2*m4*m5*m7*x2*x4*x5*x7+m2*m4*m6*m7*x2*x4*x6*x7+m2*m5*m6*m7*x2*x5*x6*x7+m3*m4*m5*m6*x3*x4*x5*x6+m3*m4*m5*m7*x3*x4*x5*x7+m3*m4*m6*m7*x3*x4*x6*x7+m3*m5*m6*m7*x3*x5*x6*x7+m4*m5*m6*m7*x4*x5*x6*x7+m2*m3*m4*x2*x3*x4+m2*m3*m5*x2*x3*x5+m2*m3*m6*x2*x3*x6+m2*m3*m7*x2*x3*x7+m2*m4*m5*x2*x4*x5+m2*m4*m6*x2*x4*x6+m2*m4*m7*x2*x4*x7+m2*m5*m6*x2*x5*x6+m2*m5*m7*x2*x5*x7+m2*m6*m7*x2*x6*x7+m3*m4*m5*x3*x4*x5+m3*m4*m6*x3*x4*x6+m3*m4*m7*x3*x4*x7+m3*m5*m6*x3*x5*x6+m3*m5*m7*x3*x5*x7+m3*m6*m7*x3*x6*x7+m4*m5*m6*x4*x5*x6+m4*m5*m7*x4*x5*x7+m4*m6*m7*x4*x6*x7+m5*m6*m7*x5*x6*x7+m2*m3*x2*x3+m2*m4*x2*x4+m2*m5*x2*x5+m2*m6*x2*x6+m2*m7*x2*x7+m3*m4*x3*x4+m3*m5*x3*x5+m3*m6*x3*x6+m3*m7*x3*x7+m4*m5*x4*x5+m4*m6*x4*x6+m4*m7*x4*x7+m5*m6*x5*x6+m5*m7*x5*x7+m6*m7*x6*x7+m2*x2+m3*x3+m4*x4+m5*x5+m6*x6+m7*x7+1)*m1*s1*x8*(m9*x9+1)/​m_denom;​ + ​ #​m_elseif n == 9; + prm s##n = -x9*s1*m1*(m2*m3*m4*m5*m6*m7*m8*x2*x3*x4*x5*x6*x7*x8+m2*m3*m4*m5*m6*m7*x2*x3*x4*x5*x6*x7+m2*m3*m4*m5*m6*m8*x2*x3*x4*x5*x6*x8+m2*m3*m4*m5*m7*m8*x2*x3*x4*x5*x7*x8+m2*m3*m4*m6*m7*m8*x2*x3*x4*x6*x7*x8+m2*m3*m5*m6*m7*m8*x2*x3*x5*x6*x7*x8+m2*m4*m5*m6*m7*m8*x2*x4*x5*x6*x7*x8+m3*m4*m5*m6*m7*m8*x3*x4*x5*x6*x7*x8+m2*m3*m4*m5*m6*x2*x3*x4*x5*x6+m2*m3*m4*m5*m7*x2*x3*x4*x5*x7+m2*m3*m4*m5*m8*x2*x3*x4*x5*x8+m2*m3*m4*m6*m7*x2*x3*x4*x6*x7+m2*m3*m4*m6*m8*x2*x3*x4*x6*x8+m2*m3*m4*m7*m8*x2*x3*x4*x7*x8+m2*m3*m5*m6*m7*x2*x3*x5*x6*x7+m2*m3*m5*m6*m8*x2*x3*x5*x6*x8+m2*m3*m5*m7*m8*x2*x3*x5*x7*x8+m2*m3*m6*m7*m8*x2*x3*x6*x7*x8+m2*m4*m5*m6*m7*x2*x4*x5*x6*x7+m2*m4*m5*m6*m8*x2*x4*x5*x6*x8+m2*m4*m5*m7*m8*x2*x4*x5*x7*x8+m2*m4*m6*m7*m8*x2*x4*x6*x7*x8+m2*m5*m6*m7*m8*x2*x5*x6*x7*x8+m3*m4*m5*m6*m7*x3*x4*x5*x6*x7+m3*m4*m5*m6*m8*x3*x4*x5*x6*x8+m3*m4*m5*m7*m8*x3*x4*x5*x7*x8+m3*m4*m6*m7*m8*x3*x4*x6*x7*x8+m3*m5*m6*m7*m8*x3*x5*x6*x7*x8+m4*m5*m6*m7*m8*x4*x5*x6*x7*x8+m2*m3*m4*m5*x2*x3*x4*x5+m2*m3*m4*m6*x2*x3*x4*x6+m2*m3*m4*m7*x2*x3*x4*x7+m2*m3*m4*m8*x2*x3*x4*x8+m2*m3*m5*m6*x2*x3*x5*x6+m2*m3*m5*m7*x2*x3*x5*x7+m2*m3*m5*m8*x2*x3*x5*x8+m2*m3*m6*m7*x2*x3*x6*x7+m2*m3*m6*m8*x2*x3*x6*x8+m2*m3*m7*m8*x2*x3*x7*x8+m2*m4*m5*m6*x2*x4*x5*x6+m2*m4*m5*m7*x2*x4*x5*x7+m2*m4*m5*m8*x2*x4*x5*x8+m2*m4*m6*m7*x2*x4*x6*x7+m2*m4*m6*m8*x2*x4*x6*x8+m2*m4*m7*m8*x2*x4*x7*x8+m2*m5*m6*m7*x2*x5*x6*x7+m2*m5*m6*m8*x2*x5*x6*x8+m2*m5*m7*m8*x2*x5*x7*x8+m2*m6*m7*m8*x2*x6*x7*x8+m3*m4*m5*m6*x3*x4*x5*x6+m3*m4*m5*m7*x3*x4*x5*x7+m3*m4*m5*m8*x3*x4*x5*x8+m3*m4*m6*m7*x3*x4*x6*x7+m3*m4*m6*m8*x3*x4*x6*x8+m3*m4*m7*m8*x3*x4*x7*x8+m3*m5*m6*m7*x3*x5*x6*x7+m3*m5*m6*m8*x3*x5*x6*x8+m3*m5*m7*m8*x3*x5*x7*x8+m3*m6*m7*m8*x3*x6*x7*x8+m4*m5*m6*m7*x4*x5*x6*x7+m4*m5*m6*m8*x4*x5*x6*x8+m4*m5*m7*m8*x4*x5*x7*x8+m4*m6*m7*m8*x4*x6*x7*x8+m5*m6*m7*m8*x5*x6*x7*x8+m2*m3*m4*x2*x3*x4+m2*m3*m5*x2*x3*x5+m2*m3*m6*x2*x3*x6+m2*m3*m7*x2*x3*x7+m2*m3*m8*x2*x3*x8+m2*m4*m5*x2*x4*x5+m2*m4*m6*x2*x4*x6+m2*m4*m7*x2*x4*x7+m2*m4*m8*x2*x4*x8+m2*m5*m6*x2*x5*x6+m2*m5*m7*x2*x5*x7+m2*m5*m8*x2*x5*x8+m2*m6*m7*x2*x6*x7+m2*m6*m8*x2*x6*x8+m2*m7*m8*x2*x7*x8+m3*m4*m5*x3*x4*x5+m3*m4*m6*x3*x4*x6+m3*m4*m7*x3*x4*x7+m3*m4*m8*x3*x4*x8+m3*m5*m6*x3*x5*x6+m3*m5*m7*x3*x5*x7+m3*m5*m8*x3*x5*x8+m3*m6*m7*x3*x6*x7+m3*m6*m8*x3*x6*x8+m3*m7*m8*x3*x7*x8+m4*m5*m6*x4*x5*x6+m4*m5*m7*x4*x5*x7+m4*m5*m8*x4*x5*x8+m4*m6*m7*x4*x6*x7+m4*m6*m8*x4*x6*x8+m4*m7*m8*x4*x7*x8+m5*m6*m7*x5*x6*x7+m5*m6*m8*x5*x6*x8+m5*m7*m8*x5*x7*x8+m6*m7*m8*x6*x7*x8+m2*m3*x2*x3+m2*m4*x2*x4+m2*m5*x2*x5+m2*m6*x2*x6+m2*m7*x2*x7+m2*m8*x2*x8+m3*m4*x3*x4+m3*m5*x3*x5+m3*m6*x3*x6+m3*m7*x3*x7+m3*m8*x3*x8+m4*m5*x4*x5+m4*m6*x4*x6+m4*m7*x4*x7+m4*m8*x4*x8+m5*m6*x5*x6+m5*m7*x5*x7+m5*m8*x5*x8+m6*m7*x6*x7+m6*m8*x6*x8+m7*m8*x7*x8+m2*x2+m3*x3+m4*x4+m5*x5+m6*x6+m7*x7+m8*x8+1)/​m_denom;​ + ​ #​m_endif + #​m_endif #​m_endif - '​}}} scale = s##n; scale = s##n; } }